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Abstract. This paper is a review of some basic mathematical ideas and results, concerning
the relations between random walks and physical models on infinite graphs from the physicists
point of view. The presentation is mainly focused on statistical models, which are particularly
relevant in the physics of matter and in field theory.
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1 Introduction

In the last twenty years, theoretical physicists have shown an increasing interest in
random walks on infinite graphs, connected with the study of physical properties of
inhomogeneous and disordered systems in the thermodynamic limit.

A relevant number of papers appeared on this subject, concerning applications to
polymers, glasses, fractals, amorphous solids, disordered magnets, biological matter,
electronic states, diffusion and transport phenomena (e.g., see [1, 5, 21, 24, 25, 28,
30, 32]). In the meanwhile, a specific mathematical formalism has been introduced
in the physical literature to deal with such kind of problems, and a new language has
developed among the researchers involved in this field, often alternative to the usual
graph-theoretical one. Moreover, the study of physical problems on infinite graphs
led to definition of brand new mathematical concepts and to the proof of theorems
concerning them.

Only recently a real collaboration between mathematicians and physicists working
on models on infinite graphs has begun, due to the initiative of both (Statistical me-
chanics and graph theory 2000 ICTP Trieste, Random Walks and Statistical Physics
2001 ESI Wien). To improve the exchange of ideas and expertise of the two commu-
nities, a common effort of “translation” of basic concepts and tools of each field is
now of primary importance. This paper has to be viewed as a first relevant step in this
direction from the physicists-side.

Our main aim is to give a self contained introduction to some basic physical models
on infinite graphs, emphasizing several mathematical details, usually skipped in the
papers written by physicists. Therefore, we decided to limit ourselves to a restricted
class of fundamental ideas and results, which can be rigorously stated and proven.
Due to this choice, many interesting topics are not discussed here, such as electrical
networks, magnetic models and quantum models; for all of them, we refer the reader
to the existing literature for more specific applications.

One of the most difficult problems in our task is undoubtedly the “physical reality”
hypothesis implicit in all physical works: by this term we mean a series of unexpressed
conditions sufficient to produce a set of behaviours observed in real systems.

Let us give an example: all real physical structures (embedded in three-dimensional
space) have been found up to now to exhibit power law behaviour in the low-frequency
density of vibrational states and therefore, when considering an infinite graph where
a physical model is defined, one always assumes that it satisfies the (often unknown)
mathematical conditions sufficient to produce such a behaviour. In our opinion the
study of these “physical reality” conditions is now the most promising and interesting
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field for a fruitful collaboration between mathematicians and physicists. To this aim,
we always explicitly state all the mathematical conditions usually assumed in phys-
ical literature, pointing out in the Remarks the still open points or only heuristically
“solved” problems.

We hope that this review will be useful to the mathematical community from at least
two different point of view: first, it would offer a collection of unsolved mathematical
problems, whose solution would be of great importance to physics; second, it should
make the interested reader able to understand the language and the ideas which can
be found in advanced physical literature concerning infinite graphs.

1.1 Definitions and notations

Let us introduce some definitions and notations that will be useful in the rest of the
paper [4, 20, 23].

Definition 1.1. A graph X is a countable set VX of vertices (or sites) (i) connected
pairwise by a set EX of unoriented edges (or links) (i, j) = (j, i). Two connected
vertices are called nearest neighbours. We denote by zi the connectivity of the site i,
i.e. the number of its nearest neighbours.

Definition 1.2. A path in X is a sequence of consecutive edges {(i, k)(k, h) . . .

(n, m)(m, j)} and its length is the number of edges in the sequence. A graph is
said to be connected if, for any two vertices i, j ∈ VX, there is always a path joining
them.

Definition 1.3. The adjacency matrix Aij is:

Aij =
{

1 if (i, j) ∈ EX,

0 if (i, j) �∈ EX.
(1.1)

Definition 1.4. The Laplacian matrix �ij is:

�ij = ziδij − Aij . (1.2)

Notice that: zi = ∑
j Aij . We define Zij = ziδij .

A generalization of the Laplacian matrix can be given:

Definition 1.5. The matrix Jij is called a ferromagnetic coupling matrix, if ∃Jmax, max, min –
> max, min,
throughout

Jmin ∈ R
+:

Jji = Jij =
{

Jmin < Jij < Jmax if (i, j) ∈ EX,

0 if (i, j) �∈ EX.
(1.3)

The generalized Laplacian associated to Jij is:

Lij = Iiδij − Jij . (1.4)

where Ii = ∑
j Jij . We also define Iij = Iiδij .
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2 The thermodynamic limit

2.1 Distance, Van Hove sphere and growth exponent

Unoriented graphs are naturally provided with an intrinsic distance, which in physics
is called the chemical distance ri,j .

Definition 2.1. ri,j is the length of the shortest path connecting the vertices i and j .
The distance between i and the subset V ′ ⊂ VX is d(i, V ′) = inf{ri,k ∈ N| k ∈ V ′}.

The chemical distance defines on the graph the balls of radius r ∈ N and center
o ∈ VX. In the physical literature these subgraphs are called the Van Hove spheres
So,r .

Definition 2.2. So,r is the subgraph of X, determined by the set of vertices Vo,r =
{i ∈ V |ri,o ≤ r} and by the set of edges Eo,r = {(i, j) ∈ E|i ∈ Vo,r , j ∈ Vo,r}. The
border of So,r is given by the set ∂Vo,r = {i ∈ Vo,r |∃j ∈ VX, (i, j) ∈ Eo,r , j �∈ Vo,r}.
For V ′ ⊂ VX, we also define ṼV ′,r = {i ∈ VX| d(i, V ′) ≤ r}.

In some cases it is useful to introduce sequences of generalized spheres S′
o,r ,

defined by sets V ′
o,r ⊂ VX such that V ′

o,0 = {o}, V ′
o,r ⊂ V ′

o,r+1 and
⋃∞

r=0 V ′
o,r = VX

and by the sets of edges E′
o,r = {(i, j) ∈ E|i ∈ V ′

o,r , j ∈ V ′
o,r}. Here we always use

for the sphere Definition 2.2.
Let |S| be the cardinality of a set S. Then |Vo,r |, as a function of the distance r ,

describes the growth rate of the graph at the large scale [26]. In particular:

Definition 2.3. A graph is said to have a polynomial growth if ∀o ∈ VX ∃c, k, such
that |Vo,r | < c rk .

Definition 2.4. For a graph satisfying (2.3), we define the upper growth exponent
d+
g and the lower growth exponent d−

g as d+
g = inf{k| |Vo,r | < c1 rk, ∀o ∈ V } and

d−
g = sup{k| |Vo,r | > c2 rk, ∀o ∈ V }. If d+

g = d−
g we call them the growth exponent

dg , or the classical connectivity dimension.

The connectivity dimension dg is known for a large class of graphs: on lattices Z
d

it coincides with the usual Euclidean dimension d, and for many fractals it has been
exactly evaluated [21].

2.2 Physical conditions

Discrete structures describing real physical systems are characterized by some impor-
tant properties, which can be translated in mathematical requirements for the graphs
we will consider.

p.c.1 We will consider only connected graphs (Definition 1.2), since any physical
model on disconnected structures can be reduced to the separate study of the
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models defined on each connected component and hence to the case of connected
graphs.

p.c.2 Since physical interactions are always bounded, the coordination numbers zi ,
representing the number of neighbours interacting with the site i, have to be
bounded; i.e. ∃zmax | zi ≤ zmax ∀i ∈ VX.

p.c.3 Real systems are always embedded in 3-dimensional space. This constraint
requires for the graph G the conditions:

(a) X has a polynomial growth (Definition 2.3)

(b)

lim
r→∞

|∂Vo,r |
|Vo,r | = 0 (2.5)

The existence itself of the limit is a physical requirement on G.

Some interesting graphs such as the Bethe lattice do not satisfy (a) and (b). For
this kind of structures many results we give in this paper do not apply and one
has to introduce different techniques.

Remark 2.5. For a large class of physically interesting graphs we have considered so
far, conditions (a) and (b) appears to be equivalent. However for the equivalence of
the two conditions a rigorous result is still lacking.

A graph satisfying p.c.1, p.c.2 and p.c.3 will be called physical graph G and the
sets of its vertices and edges will be denoted respectively with V an E. p.c.1 and
p.c.2 represent strong constraints on G and, as we will prove in detail, they have very
important consequences. For example, p.c.1 implies a simple but important limitation
on the difference of size for spheres of different centers.

Theorem 2.6. Given a physical graph G, let So,r and So′,r be two spheres of centers
o and o′, respectively, and radius r . One has:

||Vo,r | − |Vo′,r || ≤ (zmax)
2ro,o′ |∂Vo,r |. (2.6)

Proof. Since Vo′,r ⊂ Vo,r+ro,o′ ,

|Vo′,r | ≤ |Vo,r+ro,o′ | ≤ |Vo,r | + |Vo,r+ro,o′ 
 Vo,r |,
where 
 denotes the symmetric difference. Now we have |Vo,r 
 Vo,r+ro,o′ | <

|Ṽ∂Vo,r ,ro,o′ |, where |Ṽ∂Vo,r ,ro,o′ |, as in Definition 2.2, is the number of sites whose
distance from ∂Vo,r is smaller than ro,o′ . Form the uniform boundedness of zi one
obtains |Ṽ∂Vo,r ,ro,o′ | ≤ (zmax)

ro,o′ |∂Vo,r |, and then:

|Vo′,r | ≤ |Vo,r | + (zmax)
ro,o′ |∂Vo,r |. (2.7)
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From the properties of the distance, ri,o − ro,o′ ≤ ri,o′ ≤ ri,o + ro,o′ , hence ∀i such
that ri,o = r (i.e i ∈ ∂Vo,r ) we have r − ro,o′ ≤ ri,o′ ≤ r + ro,o′ and i ∈ Ṽ∂Vo,r ,ro,o′ .
So again from boundedness of zi :

|∂Vo,r | ≤ (zmax)
ro,o′ |∂Vo′,r |. (2.8)

Inequality (2.6) is a simple consequence of (2.7) and (2.8).

2.3 Averages in the thermodynamic limit and sets measure

Thermodynamic averages have a crucial role in the study of statistical models on
discrete structures. This requires the introduction of infinite graphs and the study of
the limit r → ∞ for the Van Hove spheres [13].

Definition 2.7. Given a physical graph G, let φi : V → R. The average in the
thermodynamic limit of φi is:

φ ≡ lim
r→∞

∑
i∈Vo,r

φi

|Vo,r | . (2.9)

The existence itself of limit (2.9) is a physical requirement on the functions φi .

In [2] more general averages are defined giving to each site a weight λi,r . Physical
constrains on graph structures, given in Section 2.2, has important consequences for
the behaviour of the thermodynamic averages, such as the independence of the limit
(2.9) from the choice of the center o.

Theorem 2.8. Let G be a physical graph and φi : V → R a function bounded from
below, i.e. φi > φmin ∀i ∈ V . If limit (2.9) exists for the Van Hove spheres of center
o′, then it exists for any possible center o and the result does not depend on o.

Proof. For any two vertices o and o′, we have:∑
i∈Vo′,r−r

o,o′
φi + ∑

i∈Vo,r
Vo′,r−r
o,o′

φi

|Vo,r |

=
∑

i∈Vo,r
φi

|Vo,r | =
∑

i∈Vo′,r+r
o,o′

φi − ∑
i∈Vo′,r+r

o,o′ 
Vo,r
φi

|Vo,r | ,

(2.10)

where Vo,r ⊆ Vo′,r+ro,o′ , Vo′,r−ro,o′ ⊆ Vo,r . From the boundedness of φi :∑
i∈Vo′,r−r

o,o′
φi − φmin|Vo,r 
 Vo′,r−ro,o′ |

|Vo,r |

≤

∑
i∈Vo,r

φi

|Vo,r | ≤
∑

i∈Vo′,r+r
o,o′

φi + φmin|Vo′,r+ro,o′ 
 Vo,r |
|Vo,r | .

(2.11)
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In analogy with (2.6) one proves:

|Vo,r 
 Vo′,r−ro,o′ | ≤ (zmax)
ro,o′ |∂Vo,r |,

|Vo,r 
 Vo′,r−ro,o′ | ≤ (zmax)
ro,o′ |∂Vo,r−ro.o′ |,

|Vo,r+ro,o′ 
 Vo′,r | ≤ (zmax)
ro,o′ |∂Vo,r+ro,o′ |,

|Vo,r+ro,o′ 
 Vo′,r | ≤ (zmax)
ro,o′ |∂Vo,r |,

(2.12)

and with property (2.5) we get:

lim
r→∞

∑
i∈Vo′,r−r

o,o′
φi

|Vo,r | ≤ lim
r→∞

∑
i∈Vo,r

φi

|Vo,r | ≤ lim
r→∞

∑
i∈Vo′,r+r

o,o′
φi

|Vo,r | ,

and

lim
r→∞

∑
i∈Vo′,r−r

o,o′
φi

|Vo′,r−ro,o′ | + |Vo,r 
 Vo′,r−ro,o′ |

≤ lim
r→∞

∑
i∈Vo,r

φi

|Vo,r | ≤ lim
r→∞

∑
i∈Vo′,r+r

o,o′
φi

|Vo′,r+ro,o′ | − |Vo,r 
 Vo′,r−ro,o′ |
.

(2.13)

Using again property (2.5) and inequalities (2.12) we get:

lim
r→∞

∑
i∈Vo′,r−r

o,o′
φi

|Vo′,r−ro,o′ |
≤ lim

r→∞

∑
i∈Vo,r

φi

|Vo,r | ≤ lim
r→∞

∑
i∈Vo′,r+r

o,o′
φi

|Vo′,r+ro,o′ |
. (2.14)

Therefore, if the limit with the spheres centered in o′ exists, it gives the same result
using as center any vertex o.

In what follows we drop the index o when we evaluate thermodynamic averages.
Now we can define the measure of the subsets of V ′ ⊂ V .

Definition 2.9. Given a physical graph G, the measure of a subset V ′ ⊂ V is ‖V ′‖ =
χ(V ′), where χi(V

′) is the characteristic function defined as χi(V
′) = 1 if i ∈ V ′ and

χi(V
′) = 0 if i �∈ V ′. The measure of a subset of edges E′ ⊂ E is limr→∞ |E′

r |/|Vr |,
where E′

r = {(i, j) ∈ E′| i ∈ Vr, j ∈ Vr}.

Since χi(V
′) is bounded from below, when the thermodynamic average exists, the

value of the measure ‖V ′‖ does not depend on the choice of the center o. Unfortunately
in some cases the limit defining the measure does not exist. A typical example is the
subset of Z defined as {i ∈ Z| 22n ≤ |i| ≤ 22n+1, ∀ n ∈ N}. However, these
subsets are not very interesting from a physical point of view, for example, they cannot
characterize sites with a certain thermodynamic property, since this property should
not be additive. Hence we will consider only subsets with a well-defined measure.
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3 Random walks

3.1 Definitions

Let us begin by recalling the basic definitions and results concerning (simple) random
walks on infinite graphs. A more detailed treatment can be found in the mathematical
reviews by Woess [35, 36].

Definition 3.1. The (simple) random walk on a graph X is defined by the jumping
probability pij between nearest neighbours sites i and j :

pij = Aij

zi

= (Z−1A)ij , (3.15)

where Zij = ziδij . The probability of reaching in t steps site j starting from i is:

Pij (t) = (pt )ij . (3.16)

We denote by Fij (t) the probability for a walker starting from i of reaching for the
first time in t steps the site j �= i, and by Fii(t) the probability of returning to the
starting point i for the first time after t steps (Fii(0) = 0).

The basic relationship between Pij (t) and Fij (t) is given by:

Pij (t) =
t∑

k=0

Fij (k)Pjj (t − k) + δij δt0. (3.17)

Fij ≡ ∑∞
t=0 Fij (t) turns out to be the probability of ever reaching the site j starting

from i (or of ever returning to i if j = i). Therefore, 0 < Fij ≤ 1.

Definition 3.2. The generating functions P̃ij (λ) and F̃ij (λ) are given by

P̃ij (λ) =
∞∑
t=0

λtPij (t), F̃ij (λ) =
∞∑
t=0

λtFij (t), (3.18)

where λ is a complex number.

From definition (3.18) by Abel’s lemma we have that F̃ij (λ) and P̃ij (λ) are C∞Abel –>
Abel’s functions in [0, 1). Furthermore, F̃ij (λ) is continuous also for λ = 1, while P̃ij (λ)

can diverge at this point.
Multiplying equations (3.17) by λt and then summing over all possible t we get:

P̃ij (λ) = F̃ij (λ)P̃jj (λ) + δij . (3.19)

Lemma 3.3. A simple bound on F̃ij (λ) and on P̃ij (λ) is given by:

P̃ij (λ) ≤ (1 − λ)−1, F̃ij (λ) ≤ (1 − λ)−1. (3.20)

Proof. From Pij (t) < 1, Fij (t) < 1 and (3.18) one immediately obtains (3.20).

In the following we will use the notations P̃i(λ) ≡ P̃ii (λ) and F̃i(λ) ≡ F̃ii (λ).
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3.2 The local type problem

Infinite graphs can be classified by the long time asymptotic behaviour of simple
random walks and in particular by the quantities F̃i(1) and limλ→1 P̃i(λ) [29].

Definition 3.4. A graph X is called locally recurrent if

F̃i(1) = 1 or, equivalently, lim
λ→1

P̃i(λ) = ∞ ∀i ∈ VX. (3.21)

On the other hand, X is called locally transient if:

F̃i(1) < 1 or, equivalently, lim
λ→1

P̃i(λ) < ∞ ∀i ∈ VX. (3.22)

The equivalences in the definitions (3.21) and (3.22) are simple consequences of
equation (3.19). By using standard properties of Markov chains one can prove that
(3.21) and (3.22) are independent of the vertex i [35], and then Definition 3.4 can be
considered as a property of the graph itself.

Local transience and local recurrence satisfy important universality properties [35].
Indeed, local transience and recurrence do not change if we replace the jumping
probabilities of the random walk (3.15) with the generalized jumping probabilities:

pij = Jij

Ii

. (3.23)

In [35] the invariance of the local recurrence properties under a wide class of trans-
formations of the graph itself is also proven. Local recurrence and transience are not
modified by the addition a finite number of links or the introduction of second neigh-
bour links on the graph. These invariances put into evidence that local recurrence and
transience are determined only by the large scale topology of the graph.

3.3 The local spectral dimension

The behaviour of P̃i(λ) for λ → 1− can be used not only to classify the graph as
locally transient or recurrent, but also to introduce the local spectral dimension d̃

which can be considered as a finer invariant of the graph topology. The spectral
dimension has been widely studied in physics [1, 5, 32], since it is closely connected
with such important phenomena as the anomalous diffusion and the vibrational spectra
of harmonic oscillations. In the following we will use the definition given in [24].
Since P̃i(λ) for λ < 1 is a C∞ differentiable function one can define the degree of
recurrence of a graph.

Definition 3.5. Let P̃
(n)
i (λ) be:

P̃
(n)
i (λ) =

(
d

dλ

)n

P̃i(λ). (3.24)
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A graph G is recurrent of degree N if:

lim
λ→1− P̃

(n)
i (λ) < ∞, ∀n < N, and lim

λ→1− P̃
(N)
i (λ) = ∞. (3.25)

Definition 3.6. Let X be recurrent of degree N . If the limit

D = lim
λ→1−

log(P̃
(N)
i (λ))

− log(1 − λ)
(3.26)

exists, then the spectral dimension is d̃ = 2(N − D + 1).

Lemma 3.7. Let X be a recurrent of degree N graph with local spectral dimension
d̃. We have d̃ ≤ 2 if N = 0 and 2N ≤ d̃ ≤ 2(N + 1) for N ≥ 1.

Proof. Since P̃
(N)
i (λ)) > 1, we have D ≥ 0 and the case N = 0 is proven. For

the case N ≥ 1 we have to show that D ≤ 1. Let us suppose that D > 1. We will
prove that limλ→1− P̃

(N−1)
i (λ) = ∞, hence G is recurrent of degree N − 1 leading to

a contradiction. From (3.26) we have that ∀ε > 0, ∃λ′ such that ∀λ′′, λ′ < λ′′ < 1

P̃
(N)
i (λ′′) > (1 − λ′′)−(D−ε). (3.27)

Integrating (3.27) between λ′ and λ, we get:

P̃
(N−1)
i (λ) > (D − 1 − ε)−1((1 − λ)−(D−1−ε) − (1 − λ′)−(D−1−ε)

)
+ P̃

(N−1)
i (λ′).

(3.28)

Hence, limλ→1− P̃
(N−1)
i (λ) = ∞.

In [24] the independence of d̃ of the choice of site i is proven. Therefore, the
local spectral dimension can be considered as a property of the graph. Furthermore, in
[24] some invariance properties such as the invariance for the rescaling of the jumping
probability (3.23) are also proven.

Locally recurrent graphs are recurrent of degree 0 and have local spectral dimension
smaller than 2. On the Euclidean lattices Z

d , d̃ = d [27], hence d̃ can be considered
as a generalization of the usual notion of dimension for lattices. Moreover, d̃ has been
evaluated for many graphs such as exactly decimable fractals [24, 31] and bundled
structures [3, 17, 18, 34] (The Sierpinski gasket in Fig. 1 with d̃ = 2 log(3)/ log(5) and
the comb graph in Fig. 2 with d̃ = 1.5 are two typical examples of exactly decimable
fractals and bundled structures).

Definition 3.5 is more general than the usual definition of the local spectral dimen-
sion given in physics, i.e. P̃i(λ) ∼ (1 − λ)d̃/2−1, (∼ denotes the singular asymptotic
behaviour). A typical example is the Sierpinski gasket (Fig. 1), which has been
widely studied in physics [31]. From Definition 3.5, this structure has dimension
d̃ = 2 log(3)/ log(5). However in [22] it is proven that the asymptotic behaviour of
P̃i(λ) is more complex since it presents also a small oscillatory part (here a � 1):

P̃i(λ) ∼ (1 − λ)d̃/2−1−N(1 − a sin(b log((1 − λ)) + c)).
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Figure 1. The Sierpinski gasket

Figure 2. The comb graph
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Remark 3.8. The existence of the local spectral dimension for any graph recurrent of
degree N is an important mathematically open point. Indeed, all the known graphs, for
which d̃ can not be defined (an example is the inhomogeneous Bethe lattice of Fig. 3),
are not recurrent of any degree. Moreover, in all the examples we have studied up to
now, the local spectral dimension is well-defined for all physical graphs G. Proving
that these are indeed sufficient conditions for the existence of d̃ is another interesting
open mathematical problem.

Figure 3. The inhomogeneous Bethe lattice

4 Thermodynamic averages and random walks

4.1 Recurrence and transience on the average

The study of thermodynamic properties of statistical models on infinite graphs requires
the introduction of averages of local quantities. The latter are related to random walks
by the return probabilities on the average P and F [13].

Definition 4.1. Given a physical graph G, the return probabilities on the average P

and F are defined by:

P = lim
λ→1

P̃ (λ) (4.29)

F = lim
λ→1

F̃ (λ) (4.30)
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Definition 4.2. G is called recurrent on the average (ROA) if F = 1, while it is
transient on the average (TOA) when F < 1.

Remark 4.3. The main mathematical point in Definitions 4.1 and 4.2 is the existence
of the thermodynamic average for the functions F̃i(λ) and P̃i(λ). The existence of

this limit will always be assumed for physical graphs. In [2] an example when P̃ (λ)

and F̃ (λ) are not well-defined is presented. However, the graph of this example does

not satisfy p.c.3. On the other hand, P̃ (λ) and F̃ (λ) are well-defined for all physical
graphs G we have studied up to now. A general result in this direction would be an
important breakthrough in understanding the average properties of random walks on
graphs.

Under the hypothesis of the existence of the thermodynamic averages, the limit

λ → 1− is always well-defined since P̃ (λ) and F̃ (λ) are increasing functions of λ.
Furthermore, the independence of the averages of the center of the spheres is assured
by Theorem 2.8 and by the boundedness from below of F̃i(λ) and P̃i(λ). Hence
Definition 4.2 represents a property of the graph.

In [2] a different definition of transience and recurrence on the average is given.
There the thermodynamic limit limr→∞ is replaced with lim infr→∞ which is always
well-defined. Moreover, in [2] the limit λ → 1− is evaluated before taking the
thermodynamic average. This definition leads to another graph classification. For
example, the chain of increasing cubes (see Fig. 4) from Definition 4.2 is a TOA
graph, whereas it is recurrent on the average according to the definition from [2].
Furthermore, the condition for the limit to be independent of the center of the sphere
in this case is weaker than the hypotheses of Section 2.2.

Figure 4. The chain of increasing cubes

Recurrence and transience on the average are in general independent from the
corresponding local properties. The first example of this phenomenon occurring
on inhomogeneous structures was found in a class of infinite trees called NTD
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(Fig. 5) which are locally transient but recurrent on the average [10]. On the other
hand, the chain of increasing cubes in Fig. 4 is an example of locally recurrent but
transient on the average graph.

Figure 5. The NTD graph

For (4.30) and (4.29) we cannot prove any simple relation between (4.30) and
(4.29) analogous to equation (3.19) for local probabilities. Indeed, averaging (3.19)
over all sites i would involve the average of a product, which, due to correlations,
is in general different from the product of the averages. Therefore, the equivalence
F̃i(1) = 1 ⇔ limλ→1 P̃i(λ) = ∞ is not true. There are graphs for which F < 1, but
P = ∞ (an example is shown in Fig. 6), and the study of the relation between P and
F is a non-trivial problem, which will be dealt with in detail in Sections 4.4 and 4.3.

Lemma 4.4. Let G be a physical graph such that

P(t) = lim
r→∞ |Vr |−1

∑
i∈Vr

Pii(t) and F(t) = lim
r→∞ |Vr |−1

∑
i∈Vr

Fii(t)

are well-defined. For all λ < 1 we have:

F̃ (λ) =
∞∑
t=0

λtF (t), P̃ (λ) =
∞∑
t=0

λtP (t). (4.31)
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Figure 6. An example of mixed TOA graph

Proof. For all λ < 1

P̃ (λ) = lim
r→∞

∑
i∈Vr

|Vr |−1
( t∑

t=0

λtPii(t) +
∞∑
t=t

λtPii(t)
)

=
t∑

t=0

λtP (t) + lim
r→∞

∑
i∈Vr

|Vr |−1
∞∑
t=t

λtPii(t).

(4.32)

Since
∑

i∈So,r
‖Vr‖−1∑∞

t=t λtP
G′
ii (t) ≤ λt (1 − λ)−1, letting in (4.32) t → ∞ we get

(4.31). An analogous equation also holds for Fii(t).

Remark 4.5. In the following we will also assume that P(t) and F(t) are well-defined
on a physical graph. Finding general conditions under which these hypotheses hold
is another important mathematical open point in the study of random walks on the
average.

Lemma 4.4 shows that the series defining the generating functions and the ther-
modynamic averages commute. Moreover, from (4.31) and from the Abel lemma we

get that P̃ (λ) and F̃ (λ) are C∞ functions in [0, 1). The function F̃ij (λ) is continuous
also at λ = 1, while P̃ij (λ) can diverge at this point.



50 Raffaella Burioni, Davide Cassi and Alessandro Vezzani

4.2 The average spectral dimension

Since P̃ (λ) is C∞ in [0, 1), one can define the average spectral dimension d in a way
analogous to d̃. Interestingly, the average spectral dimension of real inhomogeneous
discrete structures can be experimentally measured [28]. Moreover, d has a great
influence on the behaviour of the thermodynamic quantities (such as the specific heat)
of physical models. Hence d is a fundamental quantity in statistical and condensed
matter physics.

Definition 4.6. Let P̃ (λ)
(n)

be

P̃i(λ)
(n) =

(
d

dλ

)n

P̃ (λ). (4.33)

A physical graph G is recurrent on the average of degree N if

lim
λ→1− P̃ (λ)

(n)

< ∞, ∀n < N and lim
λ→1− P̃ (λ)

(N) = ∞. (4.34)

Definition 4.7. Let G be recurrent on the average of degree N , and

D = lim
λ→1−

log
(
P̃ (λ)

(n) )
− log(1 − λ)

. (4.35)

If the limit (3.26) exists, the average spectral dimension is d = 2(N − D + 1).

Lemma 4.8. Let G be a recurrent of degree N graph with local spectral dimension
d̃. Then d̃ ≤ 2 if N = 0 and 2N ≤ d̃ ≤ 2(N + 1) for N ≥ 1.

Proof. The proof is completely analogous to that of Lemma 3.7.

The average spectral dimension has been evaluated for many discrete structures
showing that in general, on inhomogeneous graphs, it is different from the local one.
We call this phenomenon dynamical dimensional splitting. For example, on the comb
graph (Fig. 2) d̃ = 1.5, d = 1 [19], and on the NTD graph (Fig. 5) d̃ = 1 +
log(3)/ log(2), d = 1 [10]. On the other hand, on homogeneous structures, such as

the Z
d lattices, for which all sites are equivalent, we have P̃ (λ) = P̃i(λ), ∀i and then

d̃ = d.

Remark 4.9. The behaviour of average quantities P̃ (λ) seems to be much more reg-
ular than P̃i(λ). For example, numerical results for the Sierpinski gasket put into
evidence that the oscillations of P̃i(λ) [22], which have been described in Section 3.3,

disappear in P̃ (λ). This is another heuristic result, which requires a rigorous formu-
lation.

Remark 4.10. Even for the average spectral dimension the main open problem from
a mathematical point of view is finding general conditions for its existence. As in the
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case of d̃, all the known graphs, for which d can not be defined, are not even recurrent
on the average of any degree. Furthermore, all these graphs do not satisfy p.c.2 and
p.c.3.

4.3 Pure and mixed transience on the average

In this section we study the relation between P and F . This problem, as stated in
Section 4.1 is not simple as for the case of local recurrence. In particular we show
that a complete picture of the behavior of random walks on graphs can be given by
dividing transient on the average graphs into two further classes, which will be called
pure and mixed transient on the average (TOA) [13].

Theorem 4.11. Let G be an ROA graph (i.e. F = 1), then P = ∞.

Proof. Since F = 1, for each δ > 0 it exists ε such that 1 − ε ≤ λ < 1. Then we

have: 1 − δ ≤ F̃ (λ) ≤ 1. Let S = { i ∈ V | F̃i(1 − ε) < 1 − √
δ} ⊂ V , then

1 − δ ≤ F̃ (1 − ε) = χ(S)F̃ (1 − ε) + χ(S)F̃ (1 − ε)

≤ (1 − √
δ)‖S‖ + ‖S‖ = 1 − √

δ‖S‖
(4.36)

(here S denotes the complement of S). From (4.36) we get ‖S‖ ≤ √
δ, and then

‖S‖ ≥ 1 − √
δ. Since P̃ (λ) is an increasing function of λ, for each λ ≥ 1 − ε we get:

P̃ (λ) ≥ P̃ (1 − ε) ≥ χ(S)(1 − F̃ (1 − ε))−1 ≥ ‖S‖δ−1/2 ≥ (1 − √
δ)δ−1/2. (4.37)

In this way we have proved that for an arbitrarily large value of (1−√
δ)δ−1/2 (as δ →

0), it exists ε such that for each λ with 1−ε ≤ λ < 1 we have P̃ (λ) ≥ (1−√
δ)δ−1/2,

and therefore P = limλ→1 P̃ (λ) = ∞.

Theorem 4.11 can be easily generalized

Corollary 4.12. Let G be a physical graph with a positive measure subset V ′ ⊆ V

such that limλ→1 χ(V ′)F̃ (λ) = ‖V ′‖. Then

P ≥ lim
λ→1

χ(S′)P̃ (λ) = ∞ ∀S′ ⊆ V ′, ‖S′‖ > 0. (4.38)

Hence we proved that F = 1 ⇒ P = ∞. Unfortunately, the inverse relation does
not hold (an example is given in Fig. 6), and a further classification is needed.

Definition 4.13. We say that a TOA graph is mixed if there exists a subset V ′ ⊂ V

such that ‖V ′‖ > 0 and

lim
λ→1

χ(V ′)F̃ (λ) = ‖V ′‖. (4.39)
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Definition 4.14. A graph will be called pure TOA, if:

lim
λ→1

χ(V ′)F̃ (λ)‖V ′‖−1 < k < 1 ∀V ′ ⊆ V, ‖V ‖ > 0. (4.40)

Remark 4.15. No TOA graph is known which is neither mixed nor pure. In this case

limλ→1 χ(V ′)F̃ (λ)‖V ′‖−1 should be smaller than 1 ∀V ′ ⊆ V but not smaller of any
real number k < 1. We will never consider this case and also for this problem a
general result is needed.

Theorem 4.16. P < ∞ for any pure TOA graph G.

Proof. For each 0 < λ′ < 1 let Sλ′ ⊆ V be defined as Sλ′ = {i ∈ V | F̃i(λ
′) > k}.

Since F̃i(λ) is an increasing function, ∀λ > λ′ we get χ(Sλ′)F̃i(λ) > k‖Sλ′ ‖, and

then limλ→1 χ(Sλ′)F̃i(λ) > k‖Sλ′ ‖. From Definition 4.14, ‖Sλ′ ‖ = 0. Then we get:

P̃ (λ′) = χ(Sλ′)P̃ (λ′) + χ(Sλ′)P̃ (λ′)

≤ χ(Sλ′)(1 − F̃ (λ′))−1 + ‖Sλ′ ‖(1 − λ′)−1

≤ ‖Sλ′ ‖(1 − k)−1 ≤ (1 − k)−1,

(4.41)

where we used Lemma 3.3. Taking the limit λ′ → 1 in (4.41), we get that for pure
TOA graphs P is finite.

Theorem 4.16 can be generalized

Corollary 4.17. Let G be a physical graph with a subset V ′ ⊂ V , ‖V ′‖ > 0 such that

for all S′ ⊆ V ′, ‖S′‖ > 0, limλ→1 χ(S′)F̃ (λ) ≤ ‖S′‖, then

lim
λ→1

χ(S′)P̃ (λ) < ∞. ∀S′ ⊆ V ′, ‖S′‖ > 0. (4.42)

4.4 Separability and statistical independence

Here we prove and discuss an important property characterizing mixed TOA graphs
which introduces some simplifications in the study of statistical models on these very
inhomogeneous structures. In this case, the graph G can be always decomposed in a
pure TOA subgraph S and an ROA subgraph S with independent jumping probabilities
by cutting out a zero measure set of edges. The separability property implies that the
two subgraphs are statistically independent and that their thermodynamic properties
can be studied separately. Indeed, the partition functions of magnetic models referring
to the two subgraphs factorize [11]. Let us first prove the following lemma.

Lemma 4.18. The vertices of any mixed TOA graph can be divided into two subsets
V ′, V ′ ⊂ V with ‖V ′‖, ‖V ′‖ > 0 and ‖∂V ′‖ = ‖∂V ′‖ = 0, and such that

lim
λ→1−

χ(S′)F̃ (λ)

‖S′‖ < 1 (4.43)
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for all S′ ⊆ V ′ with ‖S′‖ > 0, and

lim
λ→1−

χ(S′′)F̃ (λ)

‖S′′‖ = 1 (4.44)

for all S′′ ⊆ V ′ with ‖S′′‖ > 0.

Proof. From Definition 4.13 we have that a mixed TOA graph can always be de-
composed into two subsets V ′ and V ′ satisfying (4.43) and (4.44). Now we show
that ‖∂V ′‖ = ‖∂V ′‖ = 0. Let us suppose that ‖∂V ′‖ > 0, from the boundedness
condition on zi we have z−1

max‖∂V ′‖ ≤ ‖∂V ′‖ ≤ zmax‖∂V ′‖, and also ‖∂V ′‖ > 0.
Then from Corollaries 4.12 and 4.17 we get:

lim
λ→1

χ(∂V ′)P̃ (λ) ≤ ∞ (4.45)

and

lim
λ→1

χ(∂V ′)P̃ (λ) = ∞. (4.46)

We will show that

lim
λ→1− χ(∂V ′)P̃ (λ) ≥ z−2

max lim
λ→1− χ(∂V ′)P̃ (λ).

Then the hypotheses ‖∂V ′‖ > 0 would lead to a contradiction, proving that ‖∂V ′‖ =
‖∂V ′‖ = 0. Let us evaluate P̃i(λ) at a site i ∈ ∂V ′:

P̃i(λ) =
∑

t

λtpt
ii =

∑
t

λt
∑
jk

pikp
t−2
kj pji ≥

∑
t

λt
∑

j∈∂V ′
pijp

t−2
jj pji, (4.47)

where in the inequality we do not consider the terms in which j �= k and j �∈ ∂V ′.
Exploiting the fact that pij ≥ 1/zmax we get:

P̃i(λ) ≥ λ2

z2
max

∑
t

λt−2
∑

j∈S
i,∂V ′

pt−2
jj = λ2

z2
max

∑
j∈S

i,∂V ′

P̃j (λ), (4.48)

where S
i,∂V ′ = {j ∈ ∂V ′|∃(i, j) ∈ E}. By averaging over the sites i ∈ ∂V ′ we

obtain:

χ(∂V ′)P̃ (λ) ≥ λ2

z2
max

lim
r→∞

χi(∂V ′)
|Vr |

∑
i∈Vr

∑
j∈S

i,∂V ′

P̃j (λ)

≥ λ2

z2
max

lim
r→∞

χj (∂V ′)
|Vr |

∑
j∈Vr

P̃j (λ) = λ2

z2
max

χ(∂V ′)P̃ (λ).

(4.49)
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Taking the limit λ → 1 we have:

lim
λ→1

χ(∂V ′)P̃ (λ) ≥ 1

z2
max

lim
λ→1

χ(∂V ′)P̃ (λ) (4.50)

Theorem 4.19. Let G be a mixed TOA graph. It is always possible to find two sub-
graphs G′ and G′ of G with the following properties (we denote by V ′ ⊂ V , V ′ ⊂ V ,
E′ ⊂ E and E′ ⊂ E the positive measure sets of vertices and links defining G′ and
G′, respectively):

1. G′ is pure TOA;

2. G′ is ROA;

3. ‖V ′‖ > 0, ‖V ′‖ > 0;

4. V ′ ∩ V ′ = ∅, V ′ ∪ V ′ = V ;

5. ‖EG′,G′ ‖ = 0, where EG′,G′ = {(i, j) ∈ E| (i, j) �∈ E′, (i, j) �∈ E′} is the set of
links one has to cut for disconnecting the two subgraphs.

Proof. Let us choose the vertex sets V ′ ⊂ V and V ′ ⊂ V as the two subsets satisfying
conditions (4.43) and (4.44) of Lemma 4.18, respectively. We then have V ′ ∩ V ′ =
∅, V ′ ∪ V ′ = V , ‖V ′‖ > 0 and ‖V ′‖ > 0. Defining the sets of edges E′ =
{(i, j) ∈ E| i ∈ V ′, j ∈ V ′} and E′ = {(i, j) ∈ E| i ∈ V ′, j ∈ V ′}, one obtains
EG′,G′ = {(i, j) ∈ E| i ∈ V ′, j ∈ V ′}, then from the boundedness of zi , ‖EG′,G′ ‖ ≤
zmax‖∂V ′‖ = 0. Now we have to prove that G′ is a pure TOA graph and G′ is an

ROA graph with respect to their own transition probabilities p
G′
ij and p

G′
ij . We denote

the average and the measure evaluated in G′ by adding the superscript G′. Then the
following simple relation holds:

φ′G′ = ‖V ′‖−1χ(V ′)φ, (4.51)

where φ is any extension to V of the function φ′ : V ′ → R; in particular one has
‖ · ‖G′ = ‖V ′‖−1‖ · ‖. Putting Ṽ ′

∂V ′,t = {i ∈ V ′|d(i, ∂V ′) ≤ t} (Definition 2.2) we
get from the boundedness of the coordination number:

‖Ṽ ′
∂V ′,t‖G′ = ‖V ′‖−1‖Ṽ ′

∂V ′,t‖ < ‖V ′‖−1(zmax)
t‖∂V ′‖ = 0; , (4.52)

because ‖∂V ′‖ = 0 (Lemma 4.18). Let S′ be any subset of V ′. For the average of

F
G′
ii (t) we have (Ṽ

′
∂V ′,t is the complement of Ṽ ′

∂V ′,t in V ′):

χ(S′)FG′
(t)

G′
= χ(Ṽ

′
∂V ′,t )χ(S′)FG′

(t)

G′

+ χ(Ṽ ′
∂V ′,t )χ(S′)FG′

(t)
G′

= χ(Ṽ
′
∂V ′,t )χ(S′)FG′

(t)

G′

.

(4.53)
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Since F
G′
ii (t) = Fii(t) on Ṽ

′
∂V ′,t , we get

χ(S′)FG′
(t)

G′
= χ(Ṽ

′
∂V ′,t )χ(S′)F (t)

G′

= χ(S′)F (t)
G′ = ‖V ′‖−1χ(S′)F (t),

(4.54)

where in the second equality we used ‖Ṽ ′
∂V ′,t‖G′ = 1, while in the last one we used

(4.51) and the fact that χ(S′)χ(V ′) = χ(S′), since S′ ⊆ V ′. From Lemma 4.4 we get
∀S′ ⊆ V ′ and ∀λ < 1:

(‖S′‖G′)−1
χ(S′)F̃G′

(λ)
G′

= (‖S′‖‖V ′‖−1)−1
∞∑
t=0

λtχ(S′)FG′
(t)

G′

= (‖S′‖‖V ′‖−1)−1
∞∑
t=0

λt‖V ′‖−1χ(S′)F (t) = ‖S′‖−1χ(S′)F̃ (λ).

(4.55)

Taking the limit λ → 1− from (4.43) we obtain that G′ is a pure TOA graph. In an
analogous way one can prove that G′ is an ROA graph.

Remark 4.20. Properties similar to the separability discussed in this section can also
be found when considering the average spectral dimension instead of the simple re-
currence or transience. This leads to the introduction of the so called spectral classes
and spectral subclasses, which have been studied in details in the physical literature
in connection with the problem of critical phenomena on graphs [8, 9]. We refer the
reader to [8] for details, where the existence of the spectral dimension for classes and
subclasses, as usual in physical papers, is implicitly assumed.

5 Harmonic oscillations

5.1 The physical model

Let us consider a countable system of particles i ∈ N interacting pairwise with a
harmonic potential. In the simplest case in which all particles have the same mass m

and their position can be described by a scalar xi(t) ∈ R (t ∈ R is the time), we have
that the motion equations for the system are:

m
d2xi(t)

dt2 =
∑
j

Jji(xj (t) − xi(t)) = −
∑
j

Ljixj (t), (5.56)

where Jji (Definition 1.5) represent the elastic constants describing the interaction
between particles i and j . When all particles interact with the same strength k, we
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get:

m
d2xi(t)

dt2 =
∑
j

kAji(xj (t) − xi(t)) = −
∑
j

k�jixj (t). (5.57)

Equation (5.57) has been widely studied in physics to describe the elastic and thermal
properties of solids. Solving (5.56) and (5.57) can be reduced to an eigenvalue problem
by standard differential equation techniques. Denoting by x̃i (ω) the Fourier transform
of xi(t) with respect to time t , (5.57) becomes:

ω2x̃i (ω) = k

m

∑
j

�ji x̃j (ω) (5.58)

Hence the study of the spectral properties of the Laplacian matrix �ij plays a funda-
mental role in understanding the physical properties of harmonic oscillations.

5.2 The spectrum of the Laplacian

For the infinite graph X, the Laplacian � can be considered as a linear operator on
the Hilbert space l2(VX). From this point of view many rigorous results have been
proven (see [26] for a review). An important theorem, giving a bound on the harmonic
frequencies, is:

Theorem 5.1. Let spec(�) be the spectrum of the operator � : l2(VX) → l2(VX) on
a graph X with bounded connectivity (satisfying p.c.2). Then spec(�) ⊆ [0, 2zmax].

From a physical point of view, it is more useful to explore the graph using the Van
Hove spheres So,r . In particular, we are interested in the study of the low frequency
(infrared) spectrum of the Laplacian, since many properties, as low temperature vi-
brational specific heat, are strictly related to the behaviour of this spectral region.

Definition 5.2. Given a physical graph G, let �
o,r
ij be the Laplacian matrix relative to

So,r , and let No,r (ε) be the number of eigenstates of �
o,r
ij in the interval [0, ε]. We

define the integrated density of states as:

n(ε) = lim
r→∞ no,r (ε) = lim

r→∞ |Vo,r |−1No,r (ε). (5.59)

Remark 5.3. The general conditions for the existence and the independence from
o of limit (5.59) is another interesting mathematical open problem. In physics the
existence and the independence are always assumed.

Definition 5.4. Given a physical graph G, we say that n(ε) has a polynomial infrared
behaviour if ∃c1, c2, dω ∈ R

+ such that

c1ε
dω/2 ≤ n(ε) ≤ c2ε

dω/2. (5.60)
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Remark 5.5. Heuristic results put into evidence that if dω is well-defined, then d

is also well-defined and dω = d. This point also needs a rigorous mathematical
formulation.

6 The Gaussian model

6.1 The model

A simple statistical model describing the average properties of harmonic oscillators is
given by the Gaussian model. We first define it for a finite graph and then study the
behaviour on an infinite structure using the Van Hove spheres.

Definition 6.1. Given a finite graph X in which each site represents a particle i, let
xi ∈ R be the displacement from the particle equilibrium position, and let ki ∈ R

(ki > 0) and Jij (Definition 1.5) represent the elastic constants describing the recoil
force towards the equilibrium position and the interaction with the nearest neighbour
particle j , respectively. The Hamiltonian of the system is

H = 1

4

∑
i,j∈X

Jij (xi − xj )
2 + 1

2

∑
i∈X

kix
2
i = 1

2

∑
i,j∈X

(Lij + Kij )xixj , (6.61)

where Kij = kiδij , and Lij + Kij is called the Hamiltonian matrix. Given a func-
tion f = f (x1, x2, . . . , x|VX |) : R

|VX | → R of the displacements xi , we define the
Boltzmann average of f as

〈f 〉X(J, K) =
∫

f dµX(x), (6.62)

where

dµ(x) = Z−1e−H
∏
i∈X

dxi and Z =
∫

e−H
∏
i∈X

dxi. (6.63)

We denote the Boltzmann averages simply by 〈f 〉X (dropping (J, K)), when it
is not necessary to evidence the dependence on some specific couplings. Since the
Hamiltonian matrix is a positive defined operator, the Boltzmann average is well-
defined for all continuous bounded functions. For infinite graphs, we denote by Kij the
local coupling matrix Kij = kiδij , ki ∈ R

+ (kmax > ki > kmin, ∀i ∈ V , kmax, kmin ∈
R

+).

Definition 6.2. Given a physical graph G, a ferromagnetic coupling matrix Jij and
a local coupling matrix Kij , let Sr be a sequence of Van Hove spheres, and let J r

ij

and Kr
ij be the matrices on R

|Vr | defined as J r
ij = Jij , Kr

ij = Kij if i, j ∈ Vr , and

J r
ij = Kr

ij = 0 otherwise. If fr : R
|Vr | → R is a function of the displacements xi
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i ∈ Vr , we denote by 〈fr 〉r the Boltzmann average of fr (6.62) defined in Sr by J r
ij

and by the constants ki . The Boltzmann average of f on the graph G is then

〈f 〉 = lim
r→∞〈fr 〉r . (6.64)

In physics the most interesting function fr is the two point correlation function
xixj representing the response of the system in the site j to an excitation in the site i,
and the square average displacement:

x2
r = |Vr |−1

∑
i∈Vr

x2
i (6.65)

Another interesting quantity is the many points correlation function xi1xi2 . . . xin .
However, for the Gaussian model the average of these functions can be evaluated
as:

〈xi1xi2 . . . xin〉r =
{

0, if n is odd,
1
n!!
∑n

k1...kn=1 pk1...kn〈xik1
xik2

〉r . . . 〈xikn−1
xikn

〉r , if n is even,

(6.66)
where pk1...kn is the tensor of index permutations. Hence 〈xi1xi2 . . . xin〉r can be
reduced to the two points correlation function.

Remark 6.3. For Definition 6.2 the main open problem also regards the conditions on
the graph G and on the functions fr guaranteeing the existence of the limit as r → ∞.
In the following we will prove the existence of the limit for the two points correlation
functions, and then use (6.66) for 〈xi1xi2 . . . xin〉r . On the other hand, a proof for the

square average displacement is still lacking. For 〈xi1xi2 . . . xin〉r and 〈x2〉r we will
prove also the independence from the center of the spheres o.

Let us introduce an alternative definition for the Gaussian model [24].

Definition 6.4. Given a graph X, a ferromagnetic coupling matrix Jij , and a local
coupling matrix Kij , there exists a unique Gaussian probability measure dµg(x) on
l∞(V ) with mean zero and covariance (L + K)−1, see [24]. The measure dµg(x)

characterizes the Gaussian model, and we will use the notations

〈f (x)〉g =
∫

f (x)dµg(x), (6.67)

and, in particular,

〈xixj 〉g = (L + K)−1
ij . (6.68)

In [24] some interesting properties of the linear operator (L+K)−1 on l∞(V ) are
obtained. These properties trivially hold also for the operator (Lr + Kr)−1 on R

|Vr |,
where Lr = I r

i δij − J r
ij , I r

i = ∑
j J r

ij . In particular,
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Lemma 6.5. The operators (L + K)−1 on l∞(V ) and (Lr + Kr)−1 on R
|Vr | are

positive bounded, and

‖(L + K)−1‖ ≤ k−1
min, ‖(Lr + Kr)−1‖ ≤ k−1

min. (6.69)

6.2 The walk expansion

Let us first consider the two points correlation functions.

Lemma 6.6. Let Jij be a ferromagnetic coupling matrix, and Kij be a local coupling
matrix on a graph X. The two points correlation function can be evaluated in the
following way:

〈xixj 〉g =
((

1 + zmaxJmax

kmin

)
kj

)−1

P̃ J
ij

((
1 + kmin

zmaxJmax

)−1
)

, (6.70)

where P̃ J
ij (λ) is the generating function of the random walk defined by the jumping

probability pI
ij :

pI
ij = kmin

zmaxJmaxki

Jij +
(

1 − Ij

kmin

zmaxJmaxki

)
δij . (6.71)

Proof. Let us represent 〈xixj 〉g by a walk expansion:

〈xixj 〉g = (I − J + K)−1
ij

=

⎛⎜⎜⎝(1 + zmaxJmax

kmin

)
K

⎛⎜⎜⎝δ −
J + zmaxJmax

kmin
K − I(

1 + kmin

zmaxJmax

)
zmaxJmax

kmin
K

⎞⎟⎟⎠
⎞⎟⎟⎠

−1

ij

=
((

1 + zmaxJmax

kmin

)
kj

)−1

⎛⎜⎜⎝δ −
J + zmaxJmax

kmin
K − I(

1 + kmin

zmaxJmax

)
zmaxJmax

kmin
K

⎞⎟⎟⎠
−1

ij

=
((

1 + zmaxJmax

kmin

)
kj

)−1 ∞∑
t=0

(
1 + kmin

zmaxJmax

)−t

P I
ij (t), (6.72)

where P I
ij (t) = (pI )tij . Notice that pI

ij is a well-defined transition probability with

0 ≤ pI
ij ≤ 1 and

∑
j pI

ij = 1, then also 0 ≤ P I
ij (t) ≤ 1. From (6.72) one immediately

gets (6.70).
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Corollary 6.7. The two points correlation function 〈xixj 〉g satisfies the inequality

0 ≤ 〈xixj 〉g ≤ k−1
j . (6.73)

Proof. Equation (6.73) is a simple consequence of Lemma 6.6 and Lemma 3.3.

Theorem 6.8. Let G be a physical graph , Jij be a ferromagnetic coupling matrix and
Kij be a local coupling matrix. For the two points correlation function we have:

lim
r→∞〈xixj 〉r = 〈xixj 〉g. (6.74)

Proof. For the correlation function 〈xixj 〉r in analogy to (6.72) we get the equation

〈xixj 〉r = (Lr + Kr)−1
ij

=
((

1 + zmaxJmax

kmin

)
kj

)−1 ∞∑
t=0

(
1 + kmin

zmaxJmax

)−t

P
Ir

ij (t),
(6.75)

where P
Ir

ij (t) is defined by the jumping probability p
Ir

ij in So,r :

p
Ir

ij = kmin

zmaxJmaxki

J r
ij +

(
1 − I r

j

kmin

zmaxJmaxki

)
δij . (6.76)

Let us now choose spheres of radius r(T ) = ri,o + T + 1 (T ∈ N), so that we can get
the thermodynamic limit letting T → ∞. We have:

〈xixj 〉r(T ) =
((

1 + zmaxJmax

kmin

)
kj

)−1

×
( T∑

t=0

(
1 + kmin

zmaxJmax

)−t

P I
ij (t) (6.77)

+
∞∑

t=T +1

(
1 + kmin

zmaxJmax

)−t

P
Ir(T )

ij (t)

)
,

where we used the property that P
Ir(T )

ij (t) = P I
ij (t) in So,r(T ) for walks starting from

i and of length smaller than T + 1. Let us show that the second term in (6.77) goes to

zero if T → ∞, i.e., in the thermodynamic limit. Since 0 ≤ P
Ir(T )

ij (t) ≤ 1, one gets:

0 ≤
((

1 + zmaxJmax

kmin

)
kj

)−1 ∞∑
t=T +1

(
1 + kmin

zmaxJmax

)−t

P
Ir(T )

ij (t)

≤ k−1
i

(
1 + kmin

zmaxJmax

)−T

−→ 0 for T → ∞.

(6.78)
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Letting T → ∞ in (6.77), from (6.78) we have

〈xixj 〉 = lim
T →∞〈xixj 〉r(T )

=
((

1 + zmaxJmax

kmin

)
kj

)−1 ∞∑
t=0

(
1 + kmin

zmaxJmax

)−t

P I
ij (t) (6.79)

= 〈xixj 〉g.
Corollary 6.9. 〈xixj 〉 = limr→∞〈xixj 〉r exists and is independent of the center of
the spheres o, for all graphs X.

Proof. Since 〈xixj 〉g is well-defined and independent of o, one immediately gets the
claim from equation (6.79).

When we deal with the thermodynamic limit we usually restrict ourselves to a
physical graph. However, Definition 6.4 and Theorem 6.8 hold even for a graph
which does not satisfy p.c.1, p.c.2 and p.c.3. Hence the existence of 〈xixj 〉 and its
the independence from o is proven for all graphs and not only for physical ones.

Corollary 6.10. The many points correlation function

〈xi1xi2 . . . xin〉 = lim
r→∞〈xi1 . . . xin〉

exists and is independent of the center of the spheres o, for all graphs X. Moreover,
〈xi1xi2 . . . xin〉 = 〈xi1xi2 . . . xin〉g .

Proof. Equations (6.66) hold for the averages 〈 . 〉r on any finite sphere and for
the average 〈 . 〉g of Definition 6.4, hence from (6.79) we have 〈xi1xi2 . . . xin〉 =
〈xi1xi2 . . . xin〉g . Moreover, since 〈xi1xi2 . . . xin〉g are always well-defined and in-
dependent from o, one immediately completes the proof.

Let us now pass to the study of the average displacement.

Theorem 6.11. Let G be a physical graph , let Jij be a ferromagnetic coupling matrix,
and let Kij be a local coupling matrix. For the average displacement we have

〈x2〉 = lim
r→∞〈x2

r 〉r = 〈x2〉g. (6.80)

Proof. In the hypothesis of the existence of P I (t) = limr→∞ |Vr |−1∑
i P I

ii(t) from
(6.72) and Lemma 4.4 one has

〈x2〉g =
((

1 + zmaxJmax

kmin

)
kj

)−1 ∞∑
t=0

(
1 + kmin

zmaxJmax

)−t

P I (t). (6.81)

Given a sequence of spheres Sr , let Ṽ∂Vr ,t = {i ∈ V |d(i, ∂Vr) ≤ t} (Definition 2.2)

and Ṽ ∂Vr ,t its complement, then from p.c.2 we get

|Ṽ∂Vr ,t | ≤ zT
max|∂Vr |, (6.82)
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and from p.c.3

lim
r→∞ |Vr |−1

∑
i∈Vr

χi(Ṽ ∂Vr , t) = 0, lim
r→∞ |Vr |−1

∑
i∈Vr

χi(Ṽ ∂Vr ,t ) = 1. (6.83)

The walk expansion (6.75) gives:

lim
r→∞〈x2

r 〉r = Cj lim
r→∞

1

|Vr |
∑
i∈Vr

( T∑
t=0

(
1 + kmin

zmaxJmax

)−t

χi(Ṽ ∂Vr ,T )P I
ii(t)

+
T∑

t=0

(
1 + kmin

zmaxJmax

)−t

χi(Ṽ∂Vr ,T )P
Ir

ii (t)

+
∞∑

t=T +1

(
1 + kmin

zmaxJmax

)−t

P
Ir

ii (t)

)
,

(6.84)

where we used the property that P
Ir

ii (t) = P I
ii(t) on Ṽ ∂Vr ,T for t ≤ T and the notation

Cj = (1 + zmaxJmax/kmin)
−1k−1

j . Let us now evaluate the thermodynamic limit.

From (6.83) and the boundedness of P
Ir

ii (t) and P I
ii(t) we have

lim
r→∞〈x2

r 〉r = Cj

( T∑
t=0

(
1 + kmin

zmaxJmax

)−t

P I (t)

+ lim
r→∞ |Vr |−1

∑
i∈Vr

∞∑
t=T +1

(
1 + kmin

zmaxJmax

)−t

P
Ir

ii (t)

)
.

(6.85)

Since 0 ≤ P
Ir(T )

ij (t) ≤ 1, one gets:

0 ≤ Cj lim
r→∞ |Vr |−1

∑
i∈Vr

∞∑
t=T +1

(
1 + kmin

zmaxJmax

)−t

P
Ir(T )

ij (t)

≤ k−1
i

(
1 + kmin

zmaxJmax

)−T

−→ 0 for T → ∞. (6.86)

Letting T → ∞ in (6.85) from (6.86) we have:

lim
r→∞〈x2

r 〉r = Cj

∞∑
t=0

(
1 + kmin

zmaxJmax

)−t

P I (t) = 〈x2〉g. (6.87)

In the proof of Theorem 6.11 the hypotheses on the graph of satisfying p.c.1, p.c.2,
p.c.3 and on the existence of the thermodynamic limit are necessary, for example in
the inhomogeneous Bethe lattice (Fig. 3) Definitions 6.2 and 6.4 are not equivalent.
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Under these hypotheses equation (6.87) proves the independence of 〈x2〉 from the
choice of the center of the sphere, since 〈x2〉 is reduced to the evaluation of averages
of positive (bounded from below) functions.

6.3 Gaussian model and spectral dimensions

Lemma 6.6 puts into evidence the deep relation between the Gaussian model and
random walks. An even clearer connection can be obtained if we consider the model
defined by the Hamiltonian matrix � + mZ (m ∈ R

+).

Theorem 6.12. For the two points correlation function

〈xixj 〉(A, mZ) = 〈xixj 〉g(�, mZ) = z−1
j P̃ij

(
(1 + m)−1

)
. (6.88)

Proof. The first equation is a simple consequence of Theorem 6.8, while for the second
one we have:

〈xixj 〉g(A, mZ) = (Z − A + mZ)−1
ij = z−1

j (δ − (1 + m)−1Z−1A)−1
ij

= z−1
j

∞∑
t=0

(1 + m)−tPij (t). (6.89)

Equation (6.89) proves that 〈xixj 〉g(A, mZ) as a function of m is C∞. Theorem
6.12 allows one to recast many graph properties which had been described using
random walks in terms of correlation function of the Gaussian model.

Corollary 6.13. A graph X is locally recurrent if and only if

lim
m→0+〈xixi〉(A, mZ) = ∞.

Corollary 6.14. A graph X is locally recurrent of degree N if and only if

lim
m→0+〈xixi〉(n)(A, mZ) < ∞, ∀n < N and lim

m→0+〈xixi〉(N)(A, mZ) = ∞,

(6.90)
where 〈xixi〉(n)(A, mZ) = (−1)n(dn/dmn)〈xixi〉(A, mZ).

Corollary 6.15. Let X be a graph recurrent of degree N with local spectral dimension
d̃. Then d̃ = 2(N − D + 1), where

D = lim
m→0+

log(〈xixi〉(N)(A, mZ))

− log(m)
. (6.91)

Proof. Corollaries 6.13, 6.14 and 6.15 are simple consequences of Theorem 6.12 and
Definitions 3.4, 3.5 and 3.6.
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In [24] important universality properties are proven. Namely, it is shown that Corol-
laries 6.13, 6.14 and 6.15 hold even if one replaces � and Z with their generalizations
Lr and Kr .

Let us now consider the behaviour of the average displacement.

Theorem 6.16. Let G a physical graph. Then the average displacement satisfies the
following equation

〈x2〉(A, mZ) = 〈x2〉(A, mZ) = z−1P̃
(
(1 + m)−1

)
. (6.92)

Proof. Equation (6.92) is a consequence of Theorems 6.11 and 6.12.

Corollary 6.17. A physical graph G is recurrent on the average of degree N if and
only if

lim
m→0+〈x2〉(n)(A, mZ) < ∞, ∀n < N and lim

m→0+〈x2〉(N)(A, mZ) = ∞, (6.93)

where 〈x2〉(n)(A, mZ) = (−1)n(dn/dmn)〈x2〉(A, mZ).

Corollary 6.18. Let G be a physical graph recurrent on the average of degree N with
average spectral dimension d. Then d = 2(N − D + 1), where

D = lim
m→0+

log(〈x2〉(N)(A, mZ))

− log(m)
. (6.94)

Proof Corollaries 6.17 and 6.18 are simple consequences of Theorem 6.16, Defi-
nitions 4.6 and 4.7 and condition p.c.2, because in this case

z−1
maxP̃

(
(1 + m)−1

)
< z−1P̃

(
(1 + m)−1

)
< P̃

(
(1 + m)−1

)
.

6.4 Universality properties of d̄

In this section we will prove some important universality properties of the average
spectral dimension, which have been stated in [6, 7]. Let us begin with

Lemma 6.19. Let G be a physical graph. Then:(
∂n

∂mn

)
lim

r→∞〈x2
r 〉r (J, mK) = lim

r→∞

(
∂n

∂mn

)
〈x2

r 〉r (J, mK). (6.95)
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Proof. From (6.75) one has:(
∂n

∂mn

)
lim

r→∞〈x2
r 〉r (J, mK)

=
((

1 + zmaxJmax

kmin

)
kj

)−1 (
∂n

∂mn

)
lim

r→∞ |Vr |−1

∑
i∈Vr

(
T∑

t=0

(
1 + mkmin

zmaxJmax

)−t

P
Ir

ii (t) +
∞∑

t=T +1

(
1 + mkmin

zmaxJmax

)−t

P
Ir

ii (t)

)
,

(6.96)

where the probabilities P
Ir

ii (t) obtained from (6.76) are independent of m. In the first
term of (6.96), in the hypothesis of the existence of the thermodynamic limit we can
exchange the limit and the derivatives, since this term is given by a sum of products of
two functions, one independent of m, and the other one independent of r . Furthermore,
using the property that 0 < P

Ir

ii (t) < 1 one can prove that the second term tends to
for T → ∞. Hence, letting T → ∞ we obtain (6.95).

Theorem 6.20. Let G be a physical graph , let Jij be a ferromagnetic coupling matrix,
and let Kij , K ′

ij be two local coupling matrices such that k′
i ≥ ki, ∀i. Then

〈x2〉(n)(J, mK) ≥ 〈x2〉(n)(J, mK ′). (6.97)

Proof. Let us consider the sequence of spheres Sr . Then

∂

∂ki

〈x2
r 〉(n)

r (J r , mKr)

= −m

|Vr |
[

1

Lr + mKr

(
Kr 1

Lr + mKr

)n 1

Lr + mKr

]
ii

≤ 0.

(6.98)

The square brackets in this formula contain a product of positive defined operators
(Lemma 6.5). Hence,

〈x2
r 〉(n)

r (J r , mKr) ≥ 〈x2
r 〉(n)

r (J r , mK ′r ). (6.99)

Using Lemma 6.19 and letting r → ∞ we get (6.97).

Corollary 6.21. Let G be a physical graph recurrent of degree N and with average
spectral dimension d = 2(N − D + 1). Then for any local coupling matrices Kij

lim
m→0+〈x2〉(n)(A, mK) < ∞, ∀n < N and lim

m→0+〈x2〉(N)(A, mK) = ∞, (6.100)

and

D = lim
m→0+

log(〈x2〉(N)(A, mK))

.
− log(m) (6.101)
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Proof. From Theorem 6.20 and property p.c.2 one has:

〈x2〉(n)(A, mkmaxZ) ≤ 〈x2〉(n)(A, mK) ≤ 〈x2〉(n)(A, mkminz
−1
maxZ). (6.102)

From Corollaries 6.17, 6.18 and inequality (6.102) one gets (6.100) and (6.101).

We proved the invariance of the average spectral dimension for any bounded rescaling
of the local coupling matrix. Let us pass to examine rescalings of the ferromagnetic
coupling matrix.

Theorem 6.22. Let G be a physical graph , let Kij be a local coupling matrix, and
let Jij , J

′
ij be two ferromagnetic coupling matrices such that J ′

ij ≥ Jij , ∀(i, j) ∈ E.
Then

〈x2〉(n)(J, mK) ≥ 〈x2〉(n)(J ′, mK). (6.103)

Proof. Let us consider the sequence of spheres Sr . Then

∂

∂Jij

〈x2
r 〉(n)

r (J r , mKr) = − 1

|Vr |	ii + 	ji − 	ij − 	ji

= − 1

|Vr |v
(i,j)	v(i,j) ≤ 0,

(6.104)

where v ∈ R
|Vr |, v

(i,j)
h = δih − δjh, and

	hk =
[

1

Lr + mKr

(
Kr 1

Lr + mKr

)n 1

Lr + mKr

]
hk

. (6.105)

The inequality in (6.104) holds since 	 (6.105) is a positive defined operator (Lemma
6.5). Therefore,

〈x2
r 〉(n)

r (J r , mKr) ≥ 〈x2
r 〉(n)

r (J ′r , mKr). (6.106)

By using Lemma 6.19 and letting r → ∞, we get (6.103).

Corollary 6.23. Let G be a physical graph recurrent of degree N and with average
spectral dimension d = 2(N − D + 1). Then for any ferromagnetic coupling matrix
Jij and any local coupling matrices Kij we have:

lim
m→0+〈x2〉(n)(J, mK) < ∞, ∀n < N and lim

m→0+〈x2〉(N)(J, mK) = ∞, (6.107)

and

D = lim
m→0+

log(〈x2〉(N)(J, mK))

− log(m)
. (6.108)

Proof. From Theorem 6.22 one has:

J−1
max〈x2〉(n)(A, mJ−1

maxK) ≤ 〈x2〉(n)(J, mK)

≤ J−1
min〈x2〉(n)(A, mJ−1

minZ).
(6.109)
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From Corollaries 6.17, 6.18, 6.21 and inequality (6.109) one gets (6.107) and (6.108).

So we have proven the invariance of the average spectral dimension for a bounded
rescaling of the ferromagnetic couplings. In particular, from a random walks point of
view we proved the invariance of d for a rescaling of the jumping probabilities given
by (3.23). Let us pass to prove the invariance with respect to removing (or adding) a
zero measure set of edges.

Theorem 6.24. Given a physical graph G, a local coupling matrix Kij , a ferromag-
netic coupling matrix Jij and E′ ⊂ E such that ‖E′‖, let J ′

ij = 0 if (i, j) ∈ E′ and
J ′

ij = J ′
ij otherwise. Then

〈x2〉(J, mK) = 〈x2〉(J ′, mK). (6.110)

Proof. Let us define the coupling matrix Jij (α) = Jij (1 − αχ(i,j)(E
′)) (α ∈ R) so

that Jij (0) = Jij and Jij (1) = J ′
ij . Consider the sequence of increasing spheres Sr

from (6.104):

∂

∂α
〈x2

r 〉r (J r (α), mKr) =
∑

(i,j)∈E′
r

1

|Vr |Jij (α)v(i,j)	v(i,j) ≥ 0, (6.111)

where E′
r = {(i, j) ∈ E′| i ∈ Vr, j ∈ Vr} (Definition 2.9). From the boundedness of

	 (‖	‖ ≤ k−1
min) one has

0 ≤ ∂

∂α
〈x2

r 〉r (J r (α), mKr) ≤ 2Jmaxk
−1
min

|E′
r |

|Vr | . (6.112)

Integrating (6.112) on α ∈ [0, 1] we have:

0 ≤ 〈x2
r 〉r (J r (1), mKr) − 〈x2

r 〉r (J r (0), mKr) ≤ 2Jmaxk
−1
min

|E′
r |

|Vr | . (6.113)

Letting r → ∞ in (6.113), and using the fact that ‖E′‖ = 0, we get

〈x2〉(J (1), mK) = 〈x2〉(J (0), mK).

Theorem 6.25. Given a physical graph G recurrent of degree N and with spectral
dimension d = 2(N − D + 1), let G′ be the graph given by V ′ = V and E′ =
{(i, j)|(i, j) ∈ E ∨ (i, j)|∃k, (i, k), (k, j) ∈ E} for all ferromagnetic coupling matrix
J ′

ij on G′ and all local coupling matrices K ′
ij . Then

lim
m→0+〈x2〉(n)(J ′, mK ′) < ∞, ∀n < N and lim

m→0+〈x2〉(N)(J ′, mK ′) = ∞,

(6.114)
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and

D = lim
m→0+

log(〈x2〉(N)(J ′, mK ′))
− log(m)

. (6.115)

Proof. From Corollaries 6.21 and 6.23 we have that it is enough to prove equations
(6.114) and (6.115) for two particular matrices J ′

ij and mK ′
ij . In particular we can

chose mK ′
ij = mδij and J ′

ij = Aij (1 − α(Ii + Ij )) + α
∑

k AikAkj , where Aij is a

ferromagnetic coupling matrix on G and α ≤ (2zmax)
−1. With this condition it is easy

to show that J ′
ij is a well-defined ferromagnetic coupling matrix on G′. Let S′

r be a
sequence of increasing spheres in G′ ( S′

r correspond to spheres of radius 2r in G that
will be called S2r), we have:

〈x2
r 〉(n)

r (J ′r , K ′r ) = 1

|V ′
r |
∑
i∈V ′

r

(
1

L′r + mδ

)n+1

ii

= 1

|V2r|
∑

i∈V2r

(
1

�2r − α(�2r )2 + mδ

)n+1

ii

,

(6.116)

where we used the property that the Laplacian corresponding to A′
ij is �2r −α(�2r )2.

If we evaluate expression (6.116) in the base where L is diagonal, denoting by 0 ≤
l2r
k ≤ 2zmax (Theorem 5.1) the eigenvalues of �2r we get

1

|V2r|
|V2r|∑

k

(
1

l2r
k + m

)n+1

≤ 1

|V2r|
|V2r|∑

k

(
1

l2r
k − α(l2r

k )2 + m

)n+1

≤ 1

|V2r|
|V2r|∑

k

(
1

l2r
k (1 − α2zmax) + m

)n+1
(6.117)

Hence, rewriting equation (6.117) in the base of the sites and letting r → ∞, we get
from Lemma 6.19:

〈x2〉(n)(A, mδ) ≤ 〈x2〉(n)(J ′, K ′)

≤ (1 − α2zmax)
−1〈x2〉(n)(A, m(1 − α2zmax)

−1δ).
(6.118)

Inequality (6.118) proves equations (6.114) and (6.115).

Applying Theorem 6.25 n times we have that d is invariant under addition (or
removing) of couplings up to any finite distance n. Let us now introduce a very
general transformation on the graph G.

Definition 6.26. Let G be a physical graph, a topological rescaling of G is any graph
GP (defined by V P and EP ) obtained by the following steps.

• Let P = {Gm, Gn, . . . } any infinite partition of G given by the subgraphs Gn

(defined by Vn and En) satisfying the properties ∀n Gn is connected,
⋃∞

n Vn =
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V , ∀n, m Vn ∩ Vm = ∅, ∃K ∈ N such that |Vn| < K ∀n and En = {(i, j) ∈
E|i, j ∈ Vn}.

• V P = {n|∃Gn ∈ P }.
• EP = {(n, m)|∃(i, j) ∈ E, i ∈ Vn, j ∈ Vm}

Theorem 6.27 ([7]). Given a physical graph G its average spectral dimension d is
invariant with respect to topological rescalings introduced in Definition 6.26.

Proof. Any topological rescaling can be considered as a finite range transformation,
the distance involved in the transformations is bounded by the maximum size of the
subgraphs Gn. Hence from Theorem 6.25 one immediately obtains the proof.

7 Conclusions

The results we presented in the previous sections are the background common to any
mathematical-physicist working on physical models and random walks on infinite
graphs.

All these topics have direct physical applications in the physics of matter, which
are explained in detail in the quoted literature.

Indeed, some more advanced topics, mainly concerning phase transitions and crit-
ical phenomena, have not been discussed here. This choice is due to two main reasons:
they require specific technical knowledge of the general problem of phase transitions
in physics and most of these results are to be considered simply as heuristic investi-
gations.

We refer the interested reader to [33] for a general mathematical introduction to
phase transitions and critical phenomena and to [9, 11, 12, 14, 15, 16, 25] for specific
results on infinite graphs.
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