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Abstract

A quantum particle on a general discrete structure with a local external potential is described
by a generalized tight-binding Hamiltonian on a graph. Here, we show that this model can be
naturally mapped on a classical statistical model (the Gaussian model) on the same graph. This
equivalence provides not only a powerful technical tool for model solving, but it also puts into
evidence general fundamental properties of quantum inhomogeneous systems. c© 2000 Published
by Elsevier Science B.V. All rights reserved.
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1. Introduction

The electronic properties of real non-crystalline structures such as glasses and poly-
mers can be dramatically di�erent from the correponding ones on crystals. This is
mainly due to the lack of translation invariance and of its mathematical consequences: a
reciprocal lattice cannot be de�ned, Fourier transform becomes unuseful and geometry-
induced localization can take place, with a deep e�ect on transport. The geometry of
these systems is no longer described by a lattice, but by a generic network, i.e., a
graph, and the usual lattice models have to be replaced with models on graphs. This
extension is in general non-trivial and even the simplest Hamiltonian can exhibit exotic
behaviours. This is the case for the tight-binding model we will consider in the fol-
lowing [1]. The study of such a simple Hamiltonian, which on a lattice can be easily
diagonalized by Fourier transform, on a graph requires alternative techniques. Here, we
propose a new approach based on an exact mapping on the Gaussian model, a classical
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statistical model whose properties are well known and which can be analytically studied
by combinatorial techniques.

2. The generalized tight-binding Hamiltonian on a graph

The tight-binding approximation (see e.g. Ref. [2]) is commonly used to describe a
quantum particle on a discrete structure. The generic Hamiltonian can be written as the
sum of the kinetic energy and the potentials generated by the atoms of the structure:

H (I) =
p2

2m
+
∑

i

Vi(r) : (1)

We shall assume that near each site i the potential term can be approximated by the
atomic potential Vi of the atom at the same site i. This assumption is appropriate
when the distance between two sites is greater than the typical atomic dimensions or
when the atomic orbitals contributing to the conduction are very narrow (as the d or f
orbitals, in transition metals). In this case, the electronic wave function can be written
as a superposition of atomic orbitals, whose coe�cients depend on the geometry of
the structure:

 (r) =
∑

i

�i(r − Ri)bi ; (2)

where �i(r − Ri) is the orbital of the atom at site i.
Now, we obtain the tight-binding model assuming the atomic orbitals to overlap only

if the corresponding sites are nearest neighbours, or adjacent. The adjacency relation
is the only surviving information about the geometry of the original system. It can be
algebraically expressed introducing the adjacency matrix Aij de�ned by Aij=1 if i and
j are nearest neighbours and Aij = 0 otherwise. The adjacency matrix is the starting
point of algebraic graph theory and the abstract structure consisting of points i and
links connecting them pairwise when Aij = 1 is de�ned to be a graph G.
This formalism is particularly useful in deriving the form of the second quantization

Hamiltonian for the electron on a discrete structure (see e.g. Ref. [3]). In this case the
coe�cients of the linear combination of atomic orbitals (2) are replaced by operators
of annihilation or creation of a particle on site i:

 ̂ (r) =
∑

i

�i(r − Ri)ĉi : (3)

In this way, we have

H (II) =
∫
dr  ̂

†
(r)H (I) ̂ ((r)) =

∑
i; j

Bijĉ
†
i ĉj : (4)

The coe�cient Bij in Eq. (4) is to be evaluated in the tight-binding approximation pre-
viously described. Assuming again that the superposition between orbitals and atomic
potentials is negligible if the corresponding sites are not nearest neighbours, one obtains

Bij = ai�ij + tijAij ; (5)
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where the hopping coe�cients tij= tji and the diagonal terms ai are determined by the
atomic potentials and by the overlap integrals.
When the structure is homogeneous, all sites are equivalent and both tij and ai

are constant. This implies in particular that the diagonal term can be dropped so that
one recovers the usual form of the tight-binding Hamiltonian. In a more general case,
where the structure is inhomogeneous, a local term always appears in the generalized
tight-binding Hamiltonian (GTBH), acting as an e�ective potential generated by the
inhomogeneities of the structure. Obviously in this formulation we can also include the
case of a local external potential of arbitrary form, simply by changing the expression
of the diagonal term ai.

3. The Gaussian model on a graph

Let us consider a Gaussian model with bounded, positive, nearest-neighbour cou-
plings on a graph G. Its Hamiltonian has the form

H =
1
4

∑
i; j∈G

Jij(�i − �j)2 +
1
2

∑
i∈G

m2i �
2
i ; (6)

where 0¡�6Jij6K ¡∞ if (i; j) is a link of the graph, Jij = 0 otherwise, and
the m2i are real positive parameters called squared masses of the �eld �i, de�ned
on the sites of the graph. If we introduce the matrices Mij ≡ mi�ij and Zij ≡ zi�ij,
where zi ≡

∑
j Jij, we can write Hamiltonian (6) as

H =
1
2

∑
i; j∈G

�i(L+M 2)ij�j ; (7)

where L = Z − J is the generalized Laplacian matrix. According to the Boltzmann
statistical weight exp[−H (�)] the two points correlation function has the form 〈�i�j〉=
(L + M 2)−1ij . Let us prove that such a function may be expanded as a sum over the
paths connecting the sites i and j, Cij [4]. This can be done by observing that

〈�i�j〉= (Z +M 2 − J )−1ij =
1

zj + m2j

∞∑
n=0

[(Z +M 2)−1J ]nij : (8)

Of course, we can write the generic entry of the matrix [(Z +M 2)−1J ]n as a chained
product of n entries of (Z + M 2)−1J , summed over the intermediate entry indices.
Since the entries of the latter matrix are di�erent from zero only if their indices refer
to nearest-neighbour sites, the chained product does not vanish only if the intermediate
indices refer to sites belonging to the same n-link path joining the sites associated to
the external indices. Thus, we can write

[(Z +M 2)−1J ]nij =
∑
Cn

ij

∏
(h;k)∈Cn

ij

Jhk
zh + m2h

; (9)
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where Cn
ij denotes a generic n-link path joining the sites i and j. Inserting Eq. (9) into

Eq. (8) we get

〈�i�j〉= 1
zj + m2j

∑
n

∑
Cn

ij

∏
(h;k)∈Cn

ij

Jhk
zh + m2h

≡
∑
Cij

JCij

�Cij

; (10)

where we have introduced

JCij ≡
∏

(h;k)∈Cij

Jhk ; �Cij ≡
∏
k∈Cij

1
zk + m2k

: (11)

By expression (10), we can write any two-point correlation function as a sum over
the paths joining the associated sites, as we anticipated above. Every term of the sum,
corresponding to a single path, is the ratio of the two quantities de�ned in Eq. (11),
which are both path dependent.

4. Walk expansion and equivalence

We now describe a general procedure for calculating the Green’s functions for the
GTBH:

H =
∑
i; j

Aijtijc
†
i cj +

∑
i

aic
†
i ci ≡ HHOP + HAT : (12)

The solution of this problem is straightforward when the graph is translationally in-
variant. However, on a general graph a local term appears which can assume di�erent
values on di�erent sites and the transformation diagonalizing the adjacency matrix can
be very di�cult to determine. On the other hand, the model describes non-interacting
particles so that all the vertices can always be written as a product of one-particle
Green’s functions.
The procedure we present below does not require the explicit form of the diagonal-

ization transform and it exploits the property that the particles described in Eq. (12) are
non-interacting. Our technique consists of a complete resummation of the perturbative
expansion in the hopping parameter (Fig. 1). One starts by considering the diagonal
“atomic Hamiltonian” HAT =

∑
i aic

†
i ci and the corresponding Green’s functions

G(0)ij (!) = �ijAi(!) =
1

!− ai + i� sgn(!)
: (13)

The generic term of order n of the perturbation expansion in the hopping parameter for
Gij(!) is constructed as follows. One considers a generic n-steps walk joining the sites
i and j: it is a sequence of n+ 1 nearest-neighbours sites, the �rst is i and the last is
j. For every link (l; m) in the walk, the corresponding hopping term tlm is inserted; for
every visited site l the corresponding atomic Green’s function Al(!) is introduced. The
complete nth-order term is obtained by summing over the all possible n-steps walks:

G(n)ij (!) =
∑
Cn

ij

∏
(h;k)∈Cn

ij

thk
∏
h∈Cn

ij

Ah(!) : (14)
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Fig. 1. A diagramatic representation of the perturbative expansion for the Green’s function in the hopping
parameter.

Obviously, the exact Green’s function is obtained summing over all lenghts n of the
walks:

Gij(!) =
∑
Cij

∏
(h;k)∈Cij

thk
∏
h∈Cij

Ah(!) : (15)

Comparing Eqs. (10) and (15), it is now clear that the correlation functions of the
Gaussian model on a graph and the Green’s function for a quantum particle moving
on the same structure are deeply related. More explicitly, we identify the quantities
relative to the two models. The hopping term tij of the tight-binding Hamiltonian can
be identi�ed with the coupling constant Jij of the Gaussian model, while the factor
1=(zi + m2i ) in Eq. (10) is naturally identi�ed with the atomic Green function (13).

5. Conclusions

The exact mapping between tight-binding Green’s functions and Gaussian model
correlation functions provides an interesting parallel between quantum and classical
systems and it opens a new perspective for analytic solutions of electron models on gen-
eral discrete networks. Indeed, analytic expressions for Gaussian correlation functions
can be determined on a large class of graphs by combinatorial and random walks
techniques. As a �rst step, this mapping has provided a complete exact solution for
tight-binding models on some simple but very interesting tree graphs (comb graphs)
[1] whose non-trivial geometry has strong e�ects on spectral and eigenstates properties.
Comb graphs are a particular case of a larger class of bundled structures where closed
expressions for the Green’s functions have been obtained by the Gaussian approach
and this technique appears to be very useful for future developement in the study of
quantum particles properties on inhomogeneous networks.
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