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Anomalous diffusion and Hall effect on comb lattices
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In this paper we study the effects of a magnetic field on the discrete time random walk of a classical charged
particle moving on a comb lattice. We develop an analytical technique to study the Lorentz force effects on the
asymptotic diffusion laws. This approach also allows the description of the combined action of an electric and
a magnetic fieldHall effec). The generalization to other comblike branched structures is discussed.
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l. INTRODUCTION displacement still grows ax)~tY? with the particle follow-
ing the direction of the electric field > B/4 and the oppo-

Over the last decade a great deal of interest has beesite direction otherwise.
focused on the investigation of diffusion in disordered net- The paper is organized as follows. In Sec. Il we present a
works [1,2]. Diffusion on these structures does not exhibitreview of the results concerning the diffusion on the comb
the behavior typical of ordered crystalline lattices and it islattices in the presence of an electric figld, in Secs. Ill and
often described by dramatically different laws. This is thelV we develop our technique of random walks with memory
case of a great variety of real systems such as percolatid@ study the effects of a magnetic field. Finally, in Sec. V we
clusters, polymers, glasses, and fractals. Moreover, if the difdescribe the combined effect of an electric and a magnetic
fusing particles are electrically charged, the presence of exield on a two-dimensional comb lattice.
ternal electric and magnetic fields can give rise to further
anomalous phenomena-o.

The theoretical approach to the problem of diffusion in
disordered structures is based on the study of random walks
on nontranslationally invariant networks. The effects of an Let us briefly recall the results concerning diffusion on a
electric field are reproduced in the so-called biased randornomb lattice in the presence of an electric field applied in the
walk problem, where the probability of jumping in the direc- direction of the backbonkl]. The comb lattice in Fig. 1 is a
tion of the field is greater than the probability of jumping in discrete structure consisting of a linear chabackbong
the opposite directioh7]. When a magnetic field is present, whose points are connected with half-linear chajresth.
the Lorentz force must be taken into account. The simplesiVe shall label each point of the backbone using a coordinate
way to do this is to assume the random walker velocity to be, xe Z, and the points of the tooth linked with sike with
a vector, having the direction of the last step of the walkery,, y,eN,y,>0. Each point of the backbone is also con-
and unitary length. According to this definition, the effect of nected to itself by a loop, representing a staying probability.
the Lorentz force consists in changing the jumping probabili- In absence of electric and magnetic fields, a random
ties in a point depending on the way followed by the walkerwalker moving on the comb can jump from a generic point
to reach that particular point, i.e., the problem of randomto one of itsz; nearest neighbors with equal probability;1/
walks in presence of a magnetic field can be mapped intdhe staying probabilities, represented in Fig. 1 by the loops,
that of random walks witlshort time memory change the coordination numberfrom z;=3 to z;=4. If

In this paper we develop an analytical technique to study
diffusion of charged particles in disordered systems using g i )
biased random walks with short time memofyne-step B i b 2
memory. We apply our results to the particular case of the "
two-dimensional comb lattice in the presence of an electric
field £ and a magnetic field3 (Fig. 1). This structure, in
absence of external fields, is characterized by anomalous dif
fusion along the backbone since the average square displact
ment grows according to the relati¢r?)~tY?[1]. When an B]
electric field is applied in the direction of the backbone, the
walker is pushed by the field and the average displacemen
becomegx)~tY2. The combined application of an electric
and a magnetic field, pushing the walker in opposite direc-
tions, gives rise to different situations depending on the rela- FIG. 1. The two-dimensional comb lattice in the presence of an
tive strength of the two fields. We discuss the case of a magelectric field £ and a magnetic field3. Loops represent waiting
netic field orthogonal to the comb, showing that the averagerobabilities.

II. DIFFUSION IN THE PRESENCE OF AN ELECTRIC
FIELD

—_—
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we apply an electric field of strengty |£|<1/4, the prob- tions from the corresponding generating functions. Using
ability of jumping to the right becomes 1+, the probabil- ~ generating functions, Eq§2) and(3) become

ity of jumping to the left is 1/4- &, while both the jumping ~ ~ ~

probability on the teeth and the staying probability remain P(O,x;N)=F(O,x;N)P(O;\) 4
unchanged. Notice that we p\#fi <1/4 to prevent the jump-

ing probabilities from assuming negative values. Let us star?nd

with the case€>0. In this first case the walker is driven to

the right(R) by the electric field. Diffusion along the back- F(O,x;\)=
bone can be studied by evaluating the probabBO,x;t)

of being on si_te(, X>Q _aftert steps, for a walker starting at The whole problem is now reduced to the determination of
t=0 from a fixed originO on the backbone. The average ~

- ; : o H_(O:\) and P(O,x;\). Using the relations obtained in
displ ton th ht of th gvaftert st L
Isplacement on the right ot the origihartert steps 1s given Ref.[9] for the case€=0, we finally obtain for€+0

X

HL(O:N). (5)

157\
Z+

by
- PO\
2 xP(O,x;t)
(X)g= e 0 _ 4 |
2, POx1) (V10— 60— AN2+4N2E2+ 6\ 1-\— 20 \1-22) 2

(6)
We recall that, as usual, the average displacement after a ) ) - o
time t is defined by The asymptotic behavior of a probability function is deter-

mined by the singularities of the corresponding generating
function calculated in the variable=1—€ in the limit e

0

E XP(O,x;t) —0. In particular, if thek-order derivative of a generating
X=—x ~
X)=——. function P(i,j;1—¢€) diverges as € ?(o0>0), the
E P(O,x;t) asymptotic behavior oP(i,j;t) ast—c will be given by
X:_m P ,jit)~t7 17Kt )

In turn, P(O,x;t) can be written as . S . . : .
i andj being two generic points of the lattice. Let us study in

¢ detail the asymptotic behavior d#(O;\) for ££0. It is
P(O,x;t)= E_ F(O,x;m)P(x,x;t—m), (20 known[10] that random walks are recursiviee., the walker
m=0 returns to its initial position on the lattice with probability

whereF (O,x;m) is the probability of being for the first time equal to J when

in point x after m steps for a walker starting at tinra=0
from point O, and P(x,x;t—m) is the probability of return-

ing to x aftert—m steps. Thanks to the translational invari-

ance of the lattice along the direction of the backbone we caﬁnd the spectral dlmen3|_ah[11] 'S less or equal than”2. I
introduce the notatioP(O;t)=P(x,x;t), which holds for d>2, the random walk is transient and the probability for
each pointx of the backbone. The expressionffO,x;m)  the walker to reach the starting point is less than 1. Now, if

P(O:t)~t~92, t_c, ®)

is given by £=0, we know thatP(O;1— €) diverges as~Y*[9]. This
implies that
1 X oo oo
F(O,x;m)= —+6) > e 2 P(Ojt)e—o~t ¥, t—oe, @)
4 mp=0 my_1=0

XHL(O;mg)- - -H (O;m_;) and the spectral dimension of the comlzlis 3/2 <2. This
result implies that unbiased random walks on the comb are

X 5m,m0+-~mx,fx’ ) recursive. On the contrary, §+0,P(0,1—¢) does not di-

verge ase—0. To find a diverging quantity, we have to

whereH  (O;m,)=H_(x,x;m,) represents the probability of calculate the first-order derivative and we obtain
returning to the starting point on the backbone aftersteps

for a walker moving on a left half comb, i.e., on the structure P(O;t)g:0~t*3’2, t—oo, (10

that is obtained from the comb of Fig. 1 after suppressing all ~

the points(and relative linky that occupy positions on the so we haved=3>2 which represents a dramatic change

right of pointx. from a regime of recursive random walks to a regime of
The previous relations can be written in terms of generattransient. The electric field changes the spectral dimension

ing functions, using Tauberian theored® to extract the causing a real transition in the system. Let us now consider

asymptotic behavior for long timesof the probability func-  (x)g and its generating function:
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s displacement on the half-linear chain is known to grow as
2 XP(X;\) t2[12], and it is not affected by the presence of a staying
&(M)sz_ probability in the origin.

o

M ¢

P(x;
3 OGA) Ill. RANDOM WALKS IN A MAGNETIC FIELD

x
I

1 X Let us now turn on a magnetic field of stren@directed
Z+€ )\} along thez axis (the comb is in thex-y plane and let us
. (11 consider the effects of the Lorenz force on the walker. We
x define the random walker velocity in a generic pdirgs a
vector having the direction of the last step of the walker, i.e.,
the step the walker took to reach that point. When the walker
moves along one of the teeth, fieBlhas no consequences
since its only effect consists in trying to force the walker out
1 _ of the structure, but this is forbidden. Only when the walker
Z+5 AHL(O;N) takes the final step from a tooth to the backbone, the feld
5 modifies the jumping probabilities: pushing the charged par-
[1_ £+5 A (O')\)} ticle to the right or to the left on the backbone depending on
~ 4 L= the sign of B. The Lorentz force always comes into play
(x(\)=— 1 . (12 \when the walker moves along the backbone pushing the par-
P(O;\) ticle in the direction of the the teeth or towards the loops.
AAL(O:N) Finally, the Lorentz force is null when the walker reaches the
backbone coming from a loop, since in this case the velocity
. o is supposed to be zero. A poirton the backbone can be
in the limit A—1— e we have, forf+0, reached in four different ways: from the lefty), from the
right («), from the tooth connected with point(]), and
B(ON)— E +O(\/E) (13) after a waiting time on sitgitself (17). Once reached poixt
& the walker experiences the Lorentz force while taking the
next step. The Lorentz force will change the jumping prob-
and abilities depending on the way the walker reached pgint
Let pi(a), pa(a), ps(a), ps(e), a=—,—,T1,], be the
probabilities of jumping right, jumping left, jumping on the
tooth, and stay relative to a point on the backbone, respec-
tively. We obtain the following jumping probabilities:

XP(O;N)H(O;N)*

MSEM"

P(O;MHL(O: M) Z+5)"

x=0

These geometrical series can be easily summed, giving

P(O;\)

1—(Z+5

%+5 A (O;N)—1+0(Ve). (14)

This implies that the denominator of E(¢L2) diverges as

1/\Je while the numerator diverges asel/The asymptotic «a P1 p2 ps P4
behavior is then given by | Lig I 1 1
(X~ 422, t—oo, as ite-B i"E+B i i
— i+e i€ i-B i+B
The average displacement to the left of podit (x), , is it i€ itB i-B
obtained by substituting with — £ in Eq. (11). By straight-
forward calculation we find out that in this case, (17)
2(1+4¢) The jumping rules of the random walk are deeply modified
()L~ — 3+ag T (16) by the magnetic field since the choice of the direction to

follow is now influenced by the memory of the last step. In

For the diffusion along the direction of the teeth, since all thethe following, every probability function will be written as
teeth are equivalent, the problem can be mapped into that of

a particle diffusing on a semilinear chain having a staying Ps(t), a,B=—,<1.], (18)
probability equal to 3/4 in the origin. This comes from the

fact that each time the walker reaches one of the joiningvhere B tells in which way the walker took the last step
points between tooth and backbone has a probability 1/4 ofcorresponding to timé¢) and a represents the memory of
remaining on this same site, a probability /4 of reaching  the walker as it starts to move &t 0.

the joining point on the left and a probability W& of
reaching the joining point on the right. Since these threes
point are equivalent from the point of view of the diffusion
along the teeth, we can consider the sum of these three prob- In presence of a magnetic field, the diffusion of a random
abilities as a staying probability equal to 3/4. The averagevalker along the backbone of the comb can be still evaluated

IV. DIFFUSION IN A MAGNETIC FIELD

016116-3



BURIONI et al. PHYSICAL REVIEW E 67, 016116 (2003

using Eq.(1), but now memory effects must be taken into Moreover,x being on the right of the starting point, we can
account. The probability that a random walker starting formwrite
the origin O at t=0 with an a-type memory arrives at a

distancex>0 on the backbone aftérsteps is given by P4(O X't)=2 F2 (0,x:m)P~(O:t—m) (20)
= — 1Ny ’

P“(O,x;t)z% P4(0,x:1). a9
FLOXm)= 3 v X % Hf,;(o;mo)pl(ﬁ)% Hrﬁ(o;mopl(m--; Hp(0imy— ) P1(B) Smmy+ --m_—x
mo= My—1=
(21)
[
whereHﬁﬁ(O;t) refers to the left half comb. Let us define Hﬁﬁ(o;x)= s, B+KP4(Q)H[ﬁ(O;K)
_ +pa(a) (1= VI=A2)R{ 4(05N)
Q?(ME% Hia(0.0)pa(B), (22)
+A2p2<a>§ HE 0P H(N).
so that fora=—, 26
_ 'F'W(O;)\)Qf()\) Now we multiply this equation fop,(8) and sum ovep to
P00 )\ [QU (M ——————-  obtain
Go0)= X IIESCRINIGE
PO AlQrr 2O QL= 8,4P1(B)+APa(@)QL(V)
x 1-Qr'(N) 3 B

+ps(@)(1—V1-A2)QL(N)

Analogous relations hold fat=+«, a=1, anda=|. Asin +22p(a@)Q; (M)Q (). (27)
the case of the random walks in an electric field, the crucial
point is to know whether the quantit,"(\) tends to 1  This equation splits into a system of four equations corre-
while A—1, as well as whetheP—(O,\) diverges in this SPonding to the four values af. We solve the system to
same limit. obtain the values o[ (\), Q;(A), QC'(\), andQ{ (A). In

Let us start fromH{4(O;t), which can be evaluated using Particular, in the limith =1—e, e—0Q|(1—e) is given by

the translational invariance of the comb along the backbone )
—4B*—2B%+B+1—(3B+1)|8|

direction. Letl{'5(O;t) be the probability of returning to the l(1—e)= +0
starting point for the first time on a left half comb. We can Qui=e —4B*+ B*+2B+1 (Ve).
write the following recursion relation for the generating (28)
functions:

The solutions are now different depending®being greater
or less than zero. Fd8<0, we find

HE5(O0) =8, g+ 11 (O;M)H] 5(0N)
Ql(1-e)=Q{(1-e)=Q_ (1—€)=Q; (1—¢)

+TE (0N HE (0N +TEL(O;MH (05N,

(24) =1+0( e), (29)
while for B>0 we find
Since
Ql(1-e) 1-582-453° +O3 0
. \? 2 L(1-e)= — o),
70O =5ps(@) ;7 (1-VI=N), (29 1+2B+ B~ 4B
2B+(1+B)Ql(1—¢)
T - =
we easily obtain the final expression: QL(l-¢) 351 +0(Je), (31)
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TABLE |. Combined effect of an electric and a magnetic field.

Direction of Direction of Relative strength (X)r (X)L
£ B
£>0 B<0 C,(&,B)tY? Ci(—-&-DB)
£<0 B>0 C.(&,B) Cy(— & —B)tH?
&>Bl4 C,(&,B)tY? C.(—-&-DB)
£>0 B>0
E<Bl4 C1(&,B) C,(— & — Bt
|&|<|B|/4 C,(E,B)tY? C.(—-&-DB)
£<0 B<0
|&]>|B|/4 C1(&,B) Cy(— & - B)tH?

Q?(l_G)ZQ[(l_e)(“.B)_BQt(l_6), (32)  The most interesting situation is whei>0 and 5>0, or
when&<0 andB<0, since in these cases there is a compe-
Q. (1-6)=0Q|(1—¢€)(1—B)+ BQ} (1—€) + O( Je). tition between the effects of the two fields, i.e., they push the
(33  walker towards opposite directions. Following the same
steps described in the preceding section, we obtain two dif-
This result also implies that th@{(\) does not diverge as ferent expressions fo®(\) depending on the sign of the
A—1. ForP7(0\), one obtains that also this quantity is quantity:
finite in thex—1 limit. So we conclude that foB>0, the
leading term in the asymptotic expression of the average dis- 6=(3B+1-4&)(B-4¢E), (41)

placement on the right of poirf®® has no time dependence: o
which is the square root of th& of the second-order equa-

(X)r~C1(£=0,8), t—x, (34  tion we must solve to find the expression Qf (\) If &

<0,
while whenB<0 the same quantity grows as

Ql(1-e=Ql(1-e)=Q  (1-€)=Q (1—¢)

(X)r~Co(E=0,B)t12,  t—so0; (35)
=1+0(Ve). (42)
where
- ) I .
5(45— B) {L 5t fOr, we solve the second-order equatiorfiand obtain
Co&B)=———gem (36) arto
1-8¢&B
B 1+38

and the explicit calculation o€,(&,B) is described in the 156<——7 (43

Appendix. It is easy to show that the left average displace-

ment can be extracted from the right one simply by changing,e are in the same situation of the case0, and theQ®(\)
B in —B. This implies that for3>0, are given by Eq(42). For

(X) ~Cp(E=0,B)tY2 t—o0; 37 o B o 1738 ”
<— > ,
while for B<0, a Vv 4
(X)L ~C1(E=0,B), t—o. (380  all the Q{*(\) do not tend to 1 a&—1. Using these equa-
tions together with the relations
V. HALL EFFECT ON A COMB 1
Let us now apply an electric and a magnetic field to- Z+g_ 5>0,

gether: this will lead to different behaviors depending on the
relative signs off and B. If £>0 andB<0, the two fields 1
add their effects to push the walker to the right, so that Zé’+ B>0,

~ = 12 ~ = —
(R~ Co(£=0B), () ~Ci(£=05), t w'(39) following from the positivity of the jumping probabilities,

we obtain the final results that are summarized in Table I.

On the contrary, if we puE<0 andB>0, we obtain Notice that the average left displacement has been obtained
from the previous calculations simply by changing the signs
(X)r~C1(E=0,8), (X) ~Cy(E=0B)t? t—o, of £ andB. The case€=B/4 andE= (1+ 3B)/4 correspond

(400  to the situations=0 and describe a walker that is pushed by
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£ and B towards opposite directions with the same strengthfamily of the n-dimensional comb latticel®] where we find
As a consequence, diffusion follows the same rules of thélall effect as in the 2-d comb lattice case. Moreover, the
unbiased casé=B=0 with (x)r and(x), growing both as study of the effect of a magnetic field using random walk
t'2 and with a resulting mean displacement equal to zero. With memory applies to all the structures where the random
walk problem can be analytically solved and a proper defi-
VI. SUMMARY AND DISCUSSION nition of the magnetic field effects is allowed.

The problem of the diffusion of a classical charged par- APPENDIX
ticle in a magnetic field has been described by random walks _ o
with one-step memory. This is a generalization of the well- The calculation of the coefficier@,(¢,5) follows from
known discrete time random walks problem with the addi-the evaluation of Eq(23). Let us define the following func-
tional prescription that the jumping probabilities result to betions of £ and 3:
affected by the direction of the preceding step. In the particu- _ >
lar case of the 2d comb lattice, we obtained analytically a(&,B)=—4B'+ B+ 2B+ 1+8£(26-B-1), (A1)
the asymptotic behaviors for diffusion laws along the back- I S ape2
bone under the simultaneous presence of an electric and a C(£,B)=—4B"—5B"+1+24£B— 16", (A2)
magnetic field(Hall effec). No_tlce that these changes are The finite part ofQ"(\) in the limitA\=1—¢, e—0 is
also a product of the substantial “asymmetry” of the comb,
i.e., of the fact that the upper half comb has a different struc- 1 s o 5
ture with respect to the lower half. If we consider a comb Q(&,B)= m(—434+45 — B+ 1+8&B—16687),
where the teeth are complete infinite linear chains but com- '

: : : : (A3)

plete linear chains, no Hall effect can be put into evidence.
The technique we developed can be extended to the wholghile the coefficient ofy/e in the expression Q. (1-¢)is

c(&,B) c(&,B) 2 2 2 2
e (E,B)=DB + . (—1+4E—B+2B%)(1—8E—166%+ 48— 16EB+ 3182 — 8EB
a(&,B)  2[a(&,B) 1A B—4E)(1-4E+3B)
+ 3262182+ 282 — 64£83+ 10B* — 80EB* + 1288°). (A4)

As much as concerns the evaluation®f(O;\), it can be obtained from the corresponding first time arrival generating
function F~(O;\) through the relation

P (O;N)= ————.
1-F7(O;\N)
The finite part ofF ~(O;\) is
ren=s+a-e 28 B oo pi[rae2 8 B o A5
(’)_EZ WQ(’ )4_1 WQ(’)’ (A5)
and the coefficient of/e is
1 1 1
(EB=—|7+B —(Z—g)sf(8,8)+ S| (-&-B), (A6)
where
- C(£,B) c(£,B) . 2 2, aer?
e (EB)=-B > (—14+4£—-B—2B%)(1—-8&+ 165+ 48— 16EB+3B°+8EB
a(&B)  2la(& B)AB—4E)(1—4E+3B)
— 326232 —218%— 23*— 80EB* + 1213°) (A7)

is the coefficient ofi/e in the expression dD, (1—€). After using Tauberian theorems the final expressio@ &, 5) results
to be
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; +e.(EB)|[1-Q(EB)?+2¢ (€ B)M
cuep— fEB T ’ - 1-FED) (A8)
e 1-oepp| LED |« B
' 1-f(E,B) 1-F(&B)
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