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An analysis of the consequences of the symmetry properties for the Kardar-Parisi-Zhang equation
is presented. The formalism of the effective dynamical action for the differential equation in the
presence of white noise is reviewed and used to derive a set of Ward identities. The analysis is first
applied to the problem of the renormalizability of the theory in d = 2 + 1. A set of Ward identities
for the classical Galileian invariance, taking into account the boundary conditions of the problem, is
derived and applied to obtain exact relations for the renormalized physical quantities.
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I. INTRODUCTION

In the last few years there has been considerable effort
in understanding the behavior of growing interfaces in the
presence of disorder [1]. The subject has attracted a lot
of attention for the experimental relevance of the problem
and also, from the theoretical point of view, because of
the wide range of different physical phenomena described
by the corresponding nonlinear dynamics.

When overhanging can be neglected and when the
growth process is governed by local conditions, dynam-
ics of an isotropically growing interface in the presence of
disorder can be described by a stochastic nonlinear differ-
ential equation, the so-called Kardar-Parisi-Zhang (KPZ)
equation [2]. From a phenomenological point of view the
equation follows directly from the symmetry properties
of the physical problem: invariance under translations of
the height of the surface, isotropy in space, lack of parity
under spatial inversion, growth in a direction perpendic-
ular to the surface. Choosing a d dimensional reference
plane, we can measure the height A at the point x € R¢
at time t. The evolution of h(x,t) is then described by
the stochastic differential equation

h(z,t) = vAh(z,t) + %[Vh(a:, )2 + n(z, t), (1)

where 7(z, t) is a Gaussian noise, with zero mean after the
subtraction of the average growth velocity of the surface:

(n(z,t)) =0,
(n(z,t)n(y, 7)) = D&%z — y)é(t — 7). (2)

Equation (1) is the simplest nonlinear generalization of
the diffusion equation. It is closely related to many differ-
ent physical situations, such as flame-front propagation
[3], driven diffusion [4], and the behavior of magnetic
flux lines in superconductors [5]. Moreover, Eq. (1) can
be mapped, with very simple transformations, into the
Burgers equation, describing an infinitely compressible
irrotational fluid [6], or into a linear equation describing
a static problem for the configurational energy of a poly-
mer in quenched disorder [7, 8]. The simple nonlinear
force acting on the system is the origin of the wide appli-
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cability. Nevertheless, the effects of the nonlinear term

are difficult to treat: as an example, this term is not of

the potential type, i.e., it does not correspond to a func-

tional derivative with respect to h(x,t) of a Hamiltonian:
2, SH(h)

(w2 2 22 3)

The explicit solution of (1) is known in the ordered case
[6]. Choosing a constant initial condition, the solution
gives rise to the well known parabola patterns for the
surface, common to many physical situations.

The solution is, in general, not known in the presence of
noise. Nevertheless, the system shows, in the ordered and
in the disordered case, an interesting scaling behavior for
large space and time scales [2]. The scaling properties
are described by power laws depending on two critical
exponents, namely, the scaling of relaxation times with
length,

ox ~ t%, (4)
and the mean square fluctuation w,
w = (|h(x,1) = h(x',¢)") (5)

of the height of the surface at two points at distance L
in the large time regime:

w o LXf [Li] , (6)

where the function f(z) is constant at large values of z
and for small = behaves as £X/#. In the ordered case it is
simple to show that the two exponents are not indepen-
dent. Indeed we have

X+z=2. (7)

The effects of disorder on the roughening of the surface
are investigated here by studying the modifications of
the critical exponents with respect to the deterministic
case. There exist a few exact results about the critical
exponents in the presence of disorder.

They are exactly known in d = 1 because of relation
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(7), still holding, and because of a fluctuation-dissipation
theorem holding in d = 1 [9]. Analytic calculations on
a Cayley tree give a simple diffusion behavior in d = oo
[10]. For the intermediate region, the upper critical di-
mension of the model is still not known and different con-
jectures describing the dependence of the critical expo-
nents on d have been proposed [11]. Another approach is
based on dynamical renormalization group calculations,
using an expansion in the nonlinear coupling constant
and in the noise strength [12]. These calculations lead to
the conclusion that, in spite of the scaling properties in
the long-wavelength limit, the system has a nonpertur-
bative behavior in the physical case d = 2 and a regime
of “asymptotic freedom” is present. The cancellations
of divergence in the perturbative expansion are probably
due to symmetry relations holding between correlation
functions.

In this scenario exact results concerning the physical
quantities of the system, such as correlation and response
functions, would be of great interest and it is believed
that symmetries play a central role in the investigation
of the scaling properties of the model. In this paper we
will therefore analyze in detail the consequences of the
symmetry properties of the KPZ equation.

The paper is organized as follows. In Sec. II we review
in detail the path integral formulation for the KPZ equa-
tion. Using this formalism, in Sec. III we discuss the
problem of the renormalizability for the dynamical ac-
tion. In Sec. IV we analyze the whole symmetry group of
the KPZ equation, pointing out the existence of a kind of
conformal symmetry in the case of a Gaussian noise and
deriving the effect of symmetries on the renormalizabil-
ity of the theory in d = 2. The Ward identities for the
Galileian invariance of the system will be used to derive
directly the invariance under the renormalization proce-
dure of the coupling constant for the nonlinear term and
the fundamental relation between the two critical expo-
nents z and x in Sec. V. In Sec. VI the effects of bound-
ary conditions will be taken into account to derive some
preliminary consequences of the Galileian invariance on
the renormalized physical quantities.

II. THE EFFECTIVE ACTION
FOR THE KPZ EQUATION

Let us consider a stochastic differential equation for
a scalar field h(z,t), as a function of a spatial variable
z € R? and of the time ¢:

Flh(z,t),n(z,t)] =0, (8)
where 7(z, t) is a noise with given probability distribution

[do(n)] = [dn] exp[—p(n)]. (9)

For Langevin type equations, if F'[h,n] has no singu-
larities, the stochastic field h,(x,t) represents the unique
solution of Eq. (8). A generic functional depending on
hy(z,t) can be formally written in terms of a path inte-
gral:

A(hy) = [1ans(h — ho) A(R), (10)

where [dh] is the usual definition for the measure in the
functional integral and §(h — h,) is a formal expression
for the Dirac functional. With a change of variable (10)
can be written as

A(hy) = /[dh]&(F[h, ) A(R) det M, (11)

where
§F[h(z,t),n(z,t)]
Sh(y, )

is the Jacobian of the transformation. Expression (11)
can be restated by introducing an effective action for the
differential equation (8), the so-called dynamical action,
whose variation gives an equation of motion for h cor-
responding to (8). Let us write the determinant of the
transformation in (12) as an integral over two Grassmann

fields C and C:

M(z,t;y,7) =

(12)

det M = /[dC_’][dC] exp (/ d4zdtdiydr C(z,t)

XM(m,t;y,T)C(y,T)) (13)

and let us choose a formal expression for the functional
é by introducing an auxiliary field h:

5(Flh, n]) = / [dﬁ]eXp<— / dlzdt h(z,t)

xF[h(:c,t),n(z,t)]). (14)

With these positions expression (11) can be written as
A(hy) = [lan)[dh]iaC)dC)AR)

x exp{—[S(h, h,C,C,n)]}, (15)

where now S is the effective dynamical action [13] for
the differential equation (8) (the notation for functional
relationship is standard):

S(h,h,C,C,n) = / dizdth(z, t)Flh(z, t),n(z, t)]

— / dzdtdiydrC(z,t)
xM(z,t;y,7)C(y, 7). (16)

We are usually interested in averaging physical quanti-
ties such as A over the distribution of the noise (9). Using
the formalism of the effective action the average can be
explicitly taken. As an example let us consider the gen-
erating functional Z(J), for the correlation functions of
the field h(z,t):

Z(J)y =exp (/ {ddxdt J(xz,t)h,(x, t)})
= / [dh][dh][dC][dC] exp{—[S(h, h,C,C,n)]

+/ddmdt J(z,t)h(z,t)}. (17)
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If the differential equation is linear in the noise:
F[h(z,1)] = n(z,1), (18)

Z(J)y can be explicitly averaged over the noise distribu-
tion:

(2(2) = [l g (19)

Using (18) we obtain
(2(1) = [ nahl[ac)ac] exp{~1S(h.h,C,C)]

+ / dizdt J(z,t)h(z, 1)}, (20)
where now S is given by
S(h,h,C,C) = —w(h) + /ddwdtiz(z,t)F[h(a:,t)]

—/ddwdt diydr C(z,t)
xM(z,t;y,7)C(y,7), (21)

and w(h) is the Laplace transform of the noise distribu-
tion (9):

w(h) = / [da(n)]exp( / ddzdt ﬁ(m,t)n(x,t)). (22)

Notice that the equivalence between the fermionic inte-
gral and the determinant depends on the boundary con-
dition chosen for the fermionic fields [14].

The formalism of the dynamical action is heavy when
compared to the usual approach based on the direct anal-
ysis of the stochastic differential equation. Nevertheless,

it has very interesting consequences. First, it allows an
J

explicit integration over the noise directly on the par-
tition function. Moreover, the dynamical action allows
one to restate in the language of quantum field theory a
dynamical model described by the differential equation
(8). This equivalence is of particular interest because it
entails the extension of all perturbative and exact tech-
niques developed in path integral formalism to the case
of a stochastic dynamical problem. As will be clear in the
following analysis, the dynamical action offers a natural
background for the study of the symmetry properties of
a stochastic differential equation.

The relevant physical quantities can be rewritten in the
language of the dynamical action. In particular, the aux-
iliary field A has a physical meaning: the correlation and
response functions can be generated by taking derivatives
of the free energy with respect to the fields h and h. It is
easy to see that the two point correlation function C and
the response function G of the system are given by

Clz,t;y,7) = (h(z, )h(y, 7))

- 2w (J)
- <6Jh(ilf,t)5.]h(y,7—)> (23)
and
G(z,t;y,7) = (h(z, t)h(y, )
- §*W(J)
B <6Jh($,t)5.]ﬁ(y”r)> ) (24)

where W is the free energy and J; and J; are the conju-

gated fields for h and h, as will be explained in (27) and
(25) below.

The dynamical action for the KPZ equation (1) with
Gaussian noise (2) can be easily obtained. By integrating
over the stochastic field n the partition function and the
free energy of the model can be expressed as in (20):

Z(Iny Jj, Jo, Je) = / [dh][dﬁ][dé][dC]exp{—[S(h,iL,c,c‘*)]+ / dézdt Jn(z,t)h(z,t)

+J;l(w,t)iL(:c,t) + Jo(z,t)C(z,t) + J@(m,t)C_'(:c,t)}, (25)

where now S is the dynamical action for the KPZ equation:

S(h,h,C,C) =/ddxdt{—%iz(a:,t)2 + h(z,t) [—%h(w,t) — vAh(z, t)

— g[Vh(a:,t)]z]

—C(a,t) [%C’(ac,t) — VAC(z,t) — /\Vh(a:,t)VC(m,t)] } (26)

A corresponding relation holds for the generating func-
tional of connected correlation functions:

W(JhanlaJCw]C') = (hlZ(thJ}}aJC’JC‘)n)m (27)

and for the thermodynamic potential I' expressed as a
function of the mean values of the fields; setting

[ ~ _
and the corresponding relations for the fields h, C, C,

the Legendre transformation on W gives
C(har, bar, Car, Car) = W (Jn, I3, Jo, Je) — Jnhm
—Jihap — JoCum — JeCu. (29)

Let us recall the symmetry properties of the dynam-
ical action S, without looking at the physical problem
described by the stochastic differential equation. The
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dynamical action is invariant under the supersymmetry
transformation [15]

Sh =0,
6C = eh, (30)

Sh=eC,
6C =0,

where € is a Grassmann variable. The Becchi-Rouet-
Stora (BRS) transformation (30), first introduced in
quantized field theories [15], corresponds here to the lin-
earized version of the invariance of the functional inte-
gral with respect to a translation of the stochastic field
7. The noise is a variable of integration and can therefore
be shifted without affecting the value of the integral.

III. POWER COUNTING
AND RENORMALIZATION
FOR THE KPZ EQUATION

The dynamical problem described by the KPZ equa-
tion can be restated in terms of a quantum field theory
J

S(h,h,C,C) = / dizdt — g [ﬁ(z,t)a[h(z,t)] - / dlydrC(z,t)
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by introducing the formalism of the dynamical action. In
this framework, the generating functionals for the corre-
lation and response functions can be computed in a stan-
dard way using a perturbative approach in some small
parameter, at least in principle. We will first consider a
formal approach, without taking into account the prob-
lem of asymptotic freedom. The perturbative approach
requires in any case the study of the renormalizability of
the theory.

It is useful to consider a more general noise depending
on the field A:

h(z,t) = vAh(z,t) + %[Ah(z,t)]z
+alh(z,t)|n(z,t), (31)

where a[h(z,t)] is a generic function depending on the
field h and on its derivatives and 7 is the Gaussian noise
(2). We are always forced to consider a Gaussian noise:
otherwise we would introduce nonlocal terms in the dy-
namical action. In this case the explicit form of S is

C(.%T)} 2

dalh(z,t)]
dh(y,T)

+ / dizdth(z,t) [%h(m,t) — vAh(z,t) — %[Vh(z,t)]z]

~C(z,t) [%C(m,t) —vAC(z,t) — AVh(z,t)VC(z, t)] . (32)

Let us now compute the renormalizability dimension of
the theory by power counting [16]. Frequency has dimen-
sion 2 in order to obtain a homogeneous propagator at
large impulses. From the dimension of the integration
measure in the action (26) we compute the canonical di-
mension of the fields:

[h] = 5(d—2) + [a],

[A] = 5(d+2) ~ lal,
[C+C]=d. (33)

The canonical dimension of the operator corresponding
to the nonlinear term in the differential equation implies
that the theory is renormalizable by power counting if
the field h is dimensionless:

[Find] = 5(d+2) + [a] =0. (34)

When a is a constant as in (1), condition (34) implies
that the theory is renormalizable by power counting if

d=2. (35)

Condition (35) does not imply the renormalizability of
the theory. The procedure of the renormalization group
could introduce new operators in the dynamical action
even in d = 2. In the case of interaction terms coming
from a functional derivative of a static action, the renor-
malizability of the theory can be deduced from the su-

[
persymmetry transformations (30) and from a new inde-
pendent supersymmetry [16]. These also imply that the
dynamic correlation functions at large time scales con-
verge to the corresponding static ones, computed with
the static action.

Here the dynamical action has the simple supersym-
metry (30) and this is not enough to ensure the renor-
malizability of the model in d = 2. In this case the
symmetry of the physical problem plays a fundamental
role to provide new constraints for the operators in the
renormalized action.

Let us now study the case a=const, and therefore
[a] = 0. A generic operator O in the renormalized action
contains n spatial derivatives, n’ temporal derivatives, k
fields h, k' fields CC, and m fields h. From the dimen-
sion of the integration measure we can deduce that the
theory is renormalizable by power counting if

(/ dzzdt0> >0, (36)

implying
4—n—2n" —2k—2k'>0. (37)

The number m of fields h is not fixed since they are
adimensional in d = 2. It is easy to construct the set
of operators whose dimension is compatible with (37).
Apart from the ones corresponding to the starting dy-
namical action:
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hAR, h(Vh)?,

A(CC), VRV(CC), (38)

we can have additional terms with derivatives in h,
2
oh Oh 8%h oh 5 0h
B (E) e A (Vg
(Vh)?, Ah, (Vh)4 AR(VR)?,  (39)
terms in CC h:

LIS ToRN Yolo)
ot

(Ah)?,

(Vh)2CC, (40)

and terms in A and CC and h:
oh . .
3t h, Ah, VhVh,

cc, cccc, hec. (41)

In every term an arbitrary power of the adimensional

field A can be present. The form of the starting dynam-

ical action is not conserved if we do not introduce some

constraints on the renormalized operators. We will there-

fore consider the symmetry properties of the dynamical
problem.

IV. SYMMETRY PROPERTIES
OF THE KPZ EQUATION

Let us now consider the physical problem described by
the KPZ equation. From the derivation of Sec. I we can
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easily obtain the complete symmetry group of the dif-
ferential equation, i.e., the transformation of spatial and
time variables, of the field A and of its derivatives that
maps solutions of Eq. (1) into solutions, leaving the cor-
relations of the stochastic field n unchanged [18]. The
KPZ equation with noise (2) is invariant under transla-
tions in space:

T(x,t,h,n) = (x + €t,h,n),, (42)
translations in time:

T(x,t,h,n) = (x,t+ €, h,7n), (43)
rotations in space:

T(x,t,h,n) = (Rx,t,h,n), (44)
translations of the field:

T(x,t, h,n) = (x,t,h +€,7), (45)
scale transformations:

T(x,t,h,n) = (e°x, e*t, h, e**n) (46)
[the KPZ equation with white noise is invariant under
transformation (46) in d = 2|, Galileian transformations:

T(x,t,h,n) = (x + det,t,h+x-€+ %621&,7]) (47)

and “local” transformations:

x t dv €T 7
T(x,t,hym) = (1 T Ti e P A RAER) - o G 2Aet)2> ' (48)
[
The KPZ equation with white noise is invariant under ahCC (50)
this interesting transformation in d = 2.
Let us now consider the consequences of the symmetry and
group of Eq. (1) on the renormalized dynamical action [Xelolelod (51)

Sgr. The scaling symmetry (46) and the “local” symme-
try (48) are not conserved by the introduction of an ultra-
violet cutoff and they generate anomalies in the theory.
The remaining symmetries are conserved by the renor-
malization procedure and they can be used to obtain
constraints on the renormalized operators. Taking into
account the operators compatible with power counting
listed in Sec. III, the most general renormalized action
can be written as

Sgr(h,h,C,C) =%(h, k) — / dizdtdiydr C(z,t)
xMhyﬁ,C’é(m,t;y,T)C(y,'r). (49)

Arbitrary powers of the dimensionless field, such as
h™, are not allowed by the invariance of the equation
under translations of the field. Moreover, the rotational
invariance rules out single gradient terms.

From power counting arguments, the only operators in
the fields h and CC allowed in the matrix M are

Both terms can be ruled out in d > 2 [16]. Here we have
to take them into account explicitly.

Let us now consider the consequences of the BRS trans-
formation (30). The symmetry is conserved by the renor-
malization procedure. It is possible to derive the corre-
sponding Ward identities for the renormalized dynamical
action:

)

. é
/ddmdt [CM(m’t)ls—h]M—(x,—t) + hM(iFyt)m

xSg(har, har, Cor, Cor). (52)

Derivatives with respect to izM, Cys and then hyy, Cpr
give a relation between the coefficients of the operators
in (50) and (51):

da
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From translation invariance in k, a depends on h only Condition (55) implies
through its derivatives and this rules out (50) and (51)
because of power counting. We therefore obtain SFIh(x.t
Mpy, (2, ty,7) = M (57)
MhM,fLM,C,C'M (z,8;y,7) = My, (2, t;9,7). (54) m(y,7)

Substitfuting in (52) the ‘?xPliCit expfession for th.e Relation (55) represents the integration condition for
renormalized dynamical action (49) with the condi- Eq. (56). This can be solved and gives [16]

tion (54), we obtain two relations for the functionals
E(hM,hM) and M(hM) . R R
] 5 Z(hM,hM)z/ddydT hadFlhag] + wlhar).  (58)
t. . —
MhM (zi ’Z,U)+5hM(Z,0')MhM (:E,t,y,T) 0

‘ShM (y7 T)
(55) It is now easy to see that the only terms compatible
and with (58) are the ones already present in the starting
5 Hamiltonian. Derivatives of the BRS Ward identities

(har, har) = /ddydTiLM(y,'r)MhM (y,7;x,t). (52) give the sta.ndard relat.ion_s between th'e coefficients
of the operators in the fermionic and bosonic parts. The
(56) original form of the Hamiltonian is thus conserved:

St (@, 0)

SR(hM,iLM,CM,C_'M) = /ddmdt — g[iLM(IL‘,t)]z + ilM(:L', t) (b%hM(.’L‘,t) - cAhM(l‘, t) - g[VhM(x,t)]z )

—C_'M(l',t) (b%CM(a:,t) — CACM(J:, t) — thM(m,t)VCM(m,t)> s (59)

[

where a, b, c and d are arbitrary constants. S(hr, hr,Cr,Cr,nr) = S(h,h,C,C,n) (62)

The heuristic demonstration is the formal starting
point to derive the effects of the whole symmetry group
on the renormalized Hamiltonian. As an example we
will analyze explicitly the consequences of the Galileian
invariance in the KPZ equation.

and deriving the corresponding transformation for the
fields from the invariance of the action. Let us now take
into account the invariance of the KPZ equation under
Galileian transformations. It is well known that Eq. (1)
can be mapped into the hydrodynamic Burgers equation
[8], by setting
V. WARD IDENTITIES
FROM GALILEIAN INVARIANCE v=-Vh (63)

and in this framework Galileian invariance corresponds
to a translation in the velocity field v. For the KPZ
equation, the transformation corresponds to a tilting of
Flz,t,n,h] =0 (60) the surface of a small angle e. By using (62) and the
invariance of the measure, so that d®zrdtr = d%zdt, one
can easily obtain the transformations for the auxiliary
fermionic and bosonic fields. The Ward identities for this

The symmetry properties of a generic differential equa-
tion

under a transformation T of the fields and of the space-
time variables imply that

— transformation simply come from the fact that the fields

Flor,tr,nr,hr] = Flo,tn, A (61) are variables of integration in the functional integral and

_ The effective dynamical action contains the new fields they can be changed without affecting the value of the

h, C, and C. The symmetry properties of Eq. (1) imply integral. Writing an explicit expansion in € for the trans-

the corresponding transformation laws for the additional formations of the fields we easily get the Ward identities
fields. These are obtained by setting for the free energy W:

J

o W 0 W
d?cdtl J T TR dz.,
/ : {h(z’t)azf"a.rh(w,t)’\t+Jc(x’t)8wue“51c(w,t)'\t

7] 274 1) 1274

+Jﬁ($,t)5—*€“*—~—/\t + Jé(z’t)-a—a:_ueﬂm

At + J =
z, " 8J;(z,t) M h(z’t)z“Eu} 0. (64)

and for the thermodynamic potential I':
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Let us now examine the consequences of these relations
on the renormalized quantities. In a perturbative expan-
sion in the nonlinear coupling constant and in the noise
strength, when this exists, the primitive divergences of
the theory, i.e., the divergence in the one particle ir-
reducible diagrams obtained as derivatives of the ther-
modynamic potential I', can be easily computed: T',,
I';;, and T'j,, bhave a logarithmic divergence at large
impulses. The divergences can be handled by introduc-
ing three renormalization functions, to be determined at
each order in the perturbative expansion. In particular,
we will define a new viscosity v as a function of the bare
one, the corresponding rescaling for the bare frequency
and two renormalization factors for the nonlinear cou-
pling constant and for the noise strength:

vo = Zv,
Ao =2,

wo = Zw,
Do =ZpD. (66)

The irreducible correlation functions at fixed v, w, A,
and D are finite when A — oo at each order in pertur-
bation theory. Let us now consider the relation (65) for
the thermodynamic potential, where we will set h,, = h
for simplicity. Taking two derivatives with respect to the
fields h and h and using the extremal condition

0T’ (h)

— L =] =0 7

5h(z) n(z) (67)
we obtain the fundamental relation between G and the
three point vertex function I'}, =~ [17]:

o 8°r 83T
J e =5 i SR

=0 (68)
or, in Fourier space:
A 1o} —1 . 0 113 —
Pu 'é‘;g (p,—p) + z—a_;); ﬁhh(p’ -p,0) = 0. (69)

Substituting in (69) the expressions (66) for the renor-
J

S(h,h,C,C) = / ddmdt{—g—

P ST bS] or
d — €, — )t 3 SO (1)
/d xdt{hM(:v,t) amﬂ € 5hM(l', t) + CM(:TJ, t) 833“ €n JCM(zyt)

- 0
+CM('7:’ t) a..

h(z,t)? + h(z,t) [-g—th(x,t) — vAh(z,t)

,\zt+izM(:c,t)8i oL

€~
Ty #(ShM(JI,t)

sT o7
— At =0. (65
9z, “6Cu(2,8) " Shar(,?) m"e“} (6

I
malized functions we easily obtain

Zy = 1. (70)

Relation (70) states the invariance of the nonlinear cou-
pling constant under the renormalization procedure. The
invariance has been deduced from physical principles in
the Burgers equation, using the conservation of the paral-
lel transport term in the hydrodynamic derivative. Here
it explicitly follows from Galileian Ward identities. Note
that (70) follows from (69) in different renormalization
schemes.

Using identity (64) it is also possible to obtain the
fundamental relation between the two critical exponents
of the model describing the scaling properties of the two
point correlation function at large space and time scales:

] . (1)

The rescaling of the space variable of a factor b, by
setting £ — bz, implies a corresponding scaling for the
time variable, t — b*t and for the fields, A — bXh. Sub-
stituting these scale relations in (64), we easily obtain

t—t
lx —x'||*

(h(x, O)R(x', ¢)) ~ [Ix — x| f [

X+z=2. (72)

Relation (72) has been explicitly derived by the Galileian
invariance of the KPZ equation.

VI. GALILEIAN WARD IDENTITIES AND
CORRELATION AND RESPONSE FUNCTIONS

Some examples of consequences on the physical quan-
tities of the model will now be derived by examining the
Ward identities for the free energy W. In order to derive
physically meaningful relations, we have to consider ex-
plicitly the boundary conditions of the dynamical problem
and the mean value of the field h. Again, the formalism
of the dynamical action allows one to treat this problem
easily. As an example let us introduce in the action a
quadratic term in the field h, which explicitly breaks the
translational symmetry and selects the solution hps = 0:

A [Vh(z, t)]z]

2

+% h(z,t)? — C(z,t) [%C(z,t) —vAC(z,t) — )\Vh(m,t)VC(a:,t)] }, (73)

where m is an arbitrary parameter. It is now easy to derive the Ward identities for the free energy W corresponding
to the invariance under Galileian boosts of the new dynamical action. For simplicity, we will skip the fermion fields
because they do not contribute when the corresponding sources are taken to be zero:
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d  swW(J)
d [— -~
/d xdt{Jh(x,t)amueu(th(I, ),\t+J (=,

With one derivative with respect to the source Jy(z,t),
we obtain an identity for the two point correlation func-
tion:

82w (J)
= drdt
Yu€p m/d xdtz,e€, AL (75)
that can be rewritten as
82w (J)
= dizdt[z, — .
Yup m/ zdt[Ty — Yu + Yulen A ACE)
(76)
Using the symmetry properties of the correlation func-
tion, (76) becomes
1=m / dzdtC(z — y,t — 7). (77)

The interesting relation (77) links the value of the param-
eter m to the value of the two point correlation function

C.

/ ddmdt{Jh(w t) o

W (J) o
RTACS et il t) 5~

d
)a_ “6J( t)

SW(J)
L O ()

w(J) SW(J)

At + Jh(ﬂ?, t)(l?ufu W:Duﬁﬂ} = 0. (74)

[
Let us now turn to the problem of the effect of a generic
boundary condition for the dynamical problem. As an

example, we can choose a simple shape of the surface at
t=0:

h(x,0) = 0. (78)
Under a Galileian boost, condition (78) is changed into
h(x + Xet,0)t=0 = €-x (79)

and (79) implies an additional term in the variation of
the dynamical action. We have to take into account the
variation of the field in (z,t) as an effect of the change
in the boundary condition in (y,0):

Sh(z,t) t)

) d
h— h+e x+/d 6h( 0)

(80)

Substituting (80) in the functional integral we finally
obtain a new set of Ward identities that contains explic-
itly the boundary condition:

At

+Jp(z, )z e, — /ddth(m,t)%g%V(é%y#e“} =0. (81)

One derivative with respect to J(z,0) at zero value
of the sources gives

) SW(J)
= [ d¥y — 82
[ s (52
which reads, in Fourier transform,
1=R(k=0,t), (83)

where the functional R is the response function of the
system to a change in the boundary conditions:

5§ SW(J)

Rz —y,t—7) = 6h(y,T) 8Jn(z,t)’

(84)

To give a more general interpretation of this response
function, one can imagine letting the system evolve for a
given time and then take the configuration reached by the
field as a new starting condition. A related quantity has
been introduced in a different framework [19] in order to
study the effects of random initial conditions in domain
growth processes and their effects on universality classes.
Here relation (83) implies a sort of global conservation
law for the bulk quantity corresponding to the response
function and represents an interesting link between local
and global fluctuations in the mean value of the field. In

[

particular, the effects of a local change in the boundary
conditions are damped at long time scales.

In conclusion, the relations obtained here provide a
set of interesting constraints for response and correlation
functions which can be very useful in any nonperturba-
tive approach. Moreover, this formalism allows one to
take into account the effect of the variation of an arbi-
trary boundary condition.

VII. CONCLUSIONS

In this paper we reviewed the formalism of the dynam-
ical action for a stochastic differential equation for sur-
face growth, the KPZ equation, and, in this framework,
we analyzed in detail the consequences of the symmetry
properties of the model. We studied in detail the problem
of the renormalizability of the theory in a given spatial
dimension; in d=2 we discuss the effects of symmetry
properties and we give a heuristic demonstration of the
renormalizability of the theory. From the Ward identities
corresponding to the Galileian invariance of the system
we derive the invariance of the nonlinear coupling con-
stant under the renormalization procedure and the fun-
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damental relation between dynamical critical exponents.
We obtain a set of Ward identities taking into account the
effects of boundary conditions in order to obtain some in-
teresting relationships between physical quantities. The
method turns out to be very useful in the study of the
consequences of symmetry in the growth model and we
plan to apply it in the future to the study of the effects
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of the particular “local” symmetry on the KPZ equation
in d = 2 with white noise [20].
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