Localized states on comb lattices
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Complex networks and graphs provide a general description of a great variety of inhomogeneous
discrete systems. These range from polymers and biomolecules to complex quantum devices, such
as arrays of Josephson junctions, micro bridges and quantum wires. We introduce a new technique,
based on the analysis of the motion of a random walker, that allows us to determine the density of
states of a general local Hamiltonian on a graph, when the potential differs from zero on a finite
number of sites. We study in detail the case of the comb lattice and we derive an analytic expression
for the elements of the resolvent operator of the Hamiltonian, giving its complete spectrum.
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I. INTRODUCTION

Recent developments in microelectronics and nan-
otechnologies have led to the construction of complex
structures whose properties are mainly determined by
the geometrical arrangement of their elementary compo-
nents, such as Josephson junctions arrays, quantum dots
networks and molecular devices [1]. This possibility has
stimulated the theoretical study of general discrete struc-
tures, with particular regard to the influence of topology
on physical behaviors.

From a mathematical point of view, a complex struc-
ture can be described in terms of an abstract model called
a graph, made of sites and links. The sites correspond to
the discrete elements of the system and the links repre-
sent their mutual relations.

The description of the large-scale topology of complex
networks is based on the definition of a parameter, the
spectral dimension d, introduced for fractals by Alexan-
der and Orbach [2] and later rigorously defined on a
generic graph by Hattori, Hattori and Watanabe [3]. The
spectral dimension generalizes the Euclidean dimension
of regular lattices and rules the universal properties near
the critical points and the low temperature thermody-
namics [4]. On the other hand, the local structure of a
graph can induce many relevant effects. Recent works on
Bose-Einstein condensation on inhomogeneous networks
have put into evidence an example of a peculiar behav-
ior, due to the geometrical inhomogeneity. A system of
non—interacting bosons on a comb lattice, a low dimen-
sional, d = 1, network, presents condensation at finite
temperature [5].

Many relevant models on complex networks can be de-
scribed by an Hamiltonian matrix, composed of a kinetic
and a potential term. The former is directly related to
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the topology of the graph, while the latter takes into ac-
cont the existence of defects or impurities in the material
or the presence of an external field. On regular lattices,
the study of the spectral problem for these Hamiltonians
is simplified by the translational invariance. It is well
known that in this case the eigenvectors of the Hamil-
tonian are either localized or extended over the entire
lattice.

Here, we will consider the spectral problem for the
Hamiltonian operator on a general graph. The absence
of translational invariance gives rise to a great variety of
eigenstates, that can be localized on particular domains,
even of infinite size. A relationship between the localiza-
tion problem and the properties of a random walker mov-
ing on the graph is established and used as a method to
solve the spectral problem on an arbitrary network. The
effects of the potential matrix on the density of states
of the Hamiltonian are investigated and, in particular,
the relation between the existence of localized states and
the form of the potential is analyzed. The random walk
method is then applied to study the effects of the poten-
tial on an important case of inhomogeneous network, the
comb lattice [6, 7]. This is an infinite graph which can be
obtained connecting a linear chain, called the finger, to
each site of a basic chain, the backbone. The increasing
interest in the study of this network is due to the exis-
tence in nature of polymers and biological molecules, hav-
ing the structure of a comb lattice. Moreover, it should
be possible to build quantum devices, such as arrays of
Josephson junctions [8], micro bridges or quantum wires
arranged according to the geometry of a comb graph.

The comb graph is characterized by a peculiar contin-
uous spectrum divided in two sections. One corresponds
to generalized eigenstates extended on the whole graph.
The other presents states localized on the backbone and
exponentially decreasing on the fingers of the comb [9]. It
is shown that the existence of these states in the high en-
ergy region of the continuous spectrum can influence the
presence of localized states corresponding to a positive
potential. In particular the spectrum of the Hamiltonian



is analytically determined in the presence of a potential
which differs from zero only on a finite subgraph of the
comb lattice.

We begin (Sec. II) with a brief introduction to the
mathematical notation of graph theory; we then discuss
the definition of the Hamiltonian operator for the vibra-
tional dynamics of a graph and its quantum mechanical
behavior; a definition of the random walk problem is also
given. Section III is devoted to the investigation of the
relation between the spectral problem for the Hamilto-
nian operator and the properties of a suitable random
walk. This result is then applied in section IV to the
case of the comb lattice, where we analytically deter-
mine the density of states of the Hamiltonian using a
geometrical-combinatoric technique to compute the ran-
dom walks generating function. Finally, conclusions are
presented in section V.

II. DEFINITIONS
A. Graphs

A graph G is a countable set V' of vertices ¢ connected
pairwise by a set E of unoriented links (7, j) = (j,7). Two
sites are called nearest neighbors if there is a link between
them. The coordination number of site 4 is the number
of links that start from i. A path in G is a sequence of
consecutive links {(7, k)(k, h)...(n,m)(m, 7)}. The length
of the path is the number of links it contains. A loop
is a link between one site and itself. A simple graph is
a graph without loops and such that for any two sites
i,j € V there is at most one link between them. A graph
is said to be connected if for any two points i,7 € V
there is always a path joining them. In the following we
will consider connected graphs. The graph topology is
algebraically described by its adjacency matrix, which is
defined as follows:

A; ; = number of links between ¢ and j.

The coordination number of point ¢ can be obtained from
A by:

Z; = 2Ai,i + ZA%]
J

The adjacency matrix is a linear operator defined on the
Hilbert space [?(V). One of the most relevant opera-
tors in physics is the Laplacian, which, on a graph, is
defined [10] by:

L=27-A,

where Z is the matrix of the coordination numbers:
Zij = 20;;. This operator is the natural extension to
a graph of the usual Laplacian, which acts on the con-
tinuous three dimensional space. It has some important
spectral properties: its spectrum is real, non-negative

and bounded. In particular, on a finite graph, 0 is a sim-
ple eigenvalue of L corresponding to the constant eigen-
vector.

B. Vibrational dynamics and quantum particles on
a graph

The Laplacian operator is directly related to the vibra-
tional dynamics and to the quantum mechanical motion
of a particle on the graph. Let us consider N masses
m connected by springs of elastic constant k. The dis-
placement of the masses from their equilibrium position
is described by N vectors x; € R?® and, in the approxi-
mation of harmonic oscillations, the dynamic is given by
the set of equations:
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where the sum is performed over the nearest neighbors
j of the site i. Using the adjacency matrix to describe
this adjacency relation and introducing the time Fourier
transform y(w) of (t), one obtains:

%wgyi = Z Lz,]y7
J

The problem of finding the normal modes of oscillation
is then reduced to the spectral problem for the Laplacian
operator.

The quantum mechanical behavior of a particle mov-
ing on the graph is described by a discrete Schrodinger
equation. The wave function of the particle is a vector ¢
belonging to the [?(V') space and the equation is:
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where the Laplacian represents the kinetic term and U is
a diagonal matrix for the potential energy. One can also
describe the quantum mechanics on a graph using a tight
binding model. This model, in the so called two center
approximation, will again reduce to an Hamiltonian of
the form L+ U.

These examples clearly show the importance of the
spectral problem for the operator L + U, where U is a
diagonal real matrix U; ; = u;0; ;. In the following we
will focus our attention on the study of this problem on
a general graph. In this case, it is not possible to apply
powerful mathematical tools typical of Euclidean lattices,
such as the Fourier transform and the reciprocal lattice.
We will here introduce a method, based on random walks
techniques, that will enable us to solve the problem on a
graph, with a general potential.



C. Random walks

The walker is a classical particle moving on a graph
G. Starting from a site 7, at every discrete time step the
walker jumps in one of the nearest neighbors of i, with
probability p; ;. The simplest situation (simple random
walk) is defined by the probabilities:

g

Pij =
J Z:

It is also possible to introduce traps and sources:

: d; € R. 1
zi +d; ()

Pij =

If d; > 0 the walker can die when it passes through the
site ¢, while if —z; < d; < 0 it is possible that some other
particles will born when the walker passes through the
site. The situation with d; < —z; is meaningless because
in that case p; ; is negative. One of the interesting quan-
tities in the study of the random walk problem is the
probability P; ;(t) = (p'); ; that the walker starting from
the site ¢ will reach the site j at time ¢. Here, it is more
useful to determine another quantity, the so called gen-
erating function of random walks, defined as the discrete
Laplace transform of P(t):

P(A) =) _MNP(1).

These definitions provide us with the basis to study the
relationship between the spectral problem for L + U and
the random walks problem.

III. RANDOM WALKS AND LOCALIZATION

A. The resolvent operator and the generating
function

The spectrum of H = L + U on a graph G can be
determined by studying its resolvent:
R(w) = (H —w)™".

Here, we will show that it is possible to obtain this oper-
ator from the properties of a suitable random walk with
traps and sources on the graph G. Remembering the defi-
nition (1) we can write the generating function as follows:

i (-

[W+A (Z+D)—A) —w] '\ Y (Z+D),

—1

MZ + D) 4) (2)

where D is the diagonal matrix: D;; = d;0; ;. Choosing
the matrix D and the variable A to satisfy the condition:

D+ (1=XNZ+ A wl — AU =0,

the last term of the previous equation will contain the
resolvent operator R(w). In the particular case of a reg-
ular graph, with Z = zI, it is convenient to satisfy the
condition by setting: A = %~ and D = AU. In the
general situation we can satisfy the condition by setting:

A=1
D=U-wl.

With these definitions, the probability jump matrix be-
comes a function of w:

p(w) =

and the generating function P(\,w) a function of A and
w. The relation (2) between P and the resolvent operator
R(w) can be written as:

(Z4+U—-wI)*A (3)

R(w) = P(l,w) (Z+U —wI)™ L. (4)
From the knowledge of the resolvent operator one can
derive the whole spectrum of H. In particular, the pure
points spectrum coincides with the values of w where
R(w) is not defined. The continuous part of the spectrum
corresponds to the points of discontinuity of R(w).

It is necessary to point out some observations about the
domain of definition of the operators and about the sign
of equality in equation (4). The matrix p is a probability
jump matrix if the conditions:

weR and z,+U;—w>0 Vi

are satisfied. The series Y, p(w)" defines the generating
function ]5(1, w) in its domain of convergence. In many
cases we can obtain the generating function using some
geometrical and combinatory methods that lead us to
an analytic extension of the series outside its domain of
convergence and outside the region where p can be con-
sidered a probability. It is known that in some cases two
analytic extensions of the same function can be differ-
ent. This problem is easily solved by choosing for R(w)
the correct analytic extension of the series, taking into
account the fact that the spectrum of H is a subset of
R. An example of this situation will be presented in the
following sections.

B. Combinatorial methods

Before analyzing the special case of the comb graph it
is useful to introduce a result that can be applied to a
general class of networks. R

To compute the generating function P()), let us con-
sider a random walk with traps and sources, described
by the probability jump matrix p; ; introduced in (1), on
a given graph G.

Let us define the quantity F; ;(t) as the probability for
the walker to start from site ¢ at time 0 and to arrive in j



for the first time at time ¢. The Laplace transform F(\)
of F(t) is related to the generating function P()\) by [11]:

Pij(N) = E; j(\)Pii(\) + 6i 5. (5)

)

When the site ¢ doesn’t belong to any closed path, F; ;
can be decomposed as follows:

Fii(t) = pr

t—2pﬂ

= ZAz ]H )p]z

Zii+ta

Here H;(t) is the probability that the walker, starting
from site j, will return on j at time ¢ without passing from
i [17] and a is the value of u;. Introducing the generating
functions and using the relation (5) we obtain:

~ —1

(214 + a) [Pi,i(A)} Tz [P;g O(A)} . (6)

where ]5{70()\) indicates the generating function when
a=0.

IV. THE COMB LATTICE

The comb graph (Fig. 1) is an infinite graph, which
can be obtained connecting to each site of a linear chain,
called the backbone, another chain called the finger. The
sites of the comb can be naturally labelled introducing
two integer indices (z,y) with z,y € Z, where x labels
the different fingers and y represents the distance from
the backbone.

Let us consider on this graph the spectral problem for
the operator H = L + U with U different from zero only
on a finite number N of sites. We will call "holes” or
”walls” the non-zero elements of U.

When the attention is focused on the backbone, one
can find, in some particular cases, an analytical mapping
between the comb lattice and a linear chain with a suit-
able local potential. This happens, for example, in the
situation described in ref. [12]. If, on the contrary, one
aims to determine the eigenstates over the whole comb
structure, the random walk technique has to be used.
This topological method applies to the entire graph with-
out distinctions between backbone and fingers.

The method is based on the analysis of the random
walk defined by the jump matrix probability introduced
in (3). The idea is to find the generating function for
the random walk corresponding to the case with w = 0,
that is a random walk with a finite number N of traps
or sources, and then to substitute z(; ) with z(; ) —w

In what follows F' and P will refer to a comb lattice.
A quantity with the superscript ”!” refers to the linear
chain while ”2” means a comb lattice or part of it.

FIG. 1: Two dimensional comb graph.

A. The single hole

We will start our analysis from the case of a potential
made by a single hole or wall situated in site (0,y), that
is when (g ) = adyr 00y . Let us call ¢ the site (0,y)
and 0 the site (0, 0).

Result (6) allows for the calculation of the generating
function P;;()\) for a simple random walk on the comb
graph.

Let us call 1151-(79;) (M) the generating function of the ran-
dom walks on a finite and open (the first and last site of
the chain are not connected each other) linear chain made
of x sites and where the probability for the walker to jump
from one site to the next one is always % This function
can be calculated using standard methods [13, 14]. We
begin by calculating F; ;(t). Let’s call Pélg (t) the prob-
ability for the walker to start from 0 and go back to 0
at time ¢ without passing through site i. F;;(t) can be
decomposed in:

1 1 _
Fialt) = VHo(t—2) + = LR (¢ — 2)
1
s [ )
t1,t2,l3

X PO(,Z()) (tz) 1P0(z1:12) (t3)6t1+t2+t3+4,t )
where 2z, is the coordination number of a site of the back-
bone while z; refers to the fingers. The first term de-
scribes the possibility for the walker to move from i in
the direction opposite to the backbone. The second term
corresponds to the walker moving towards the backbone
but without touching it. The last term is the probability
for the walker to move towards the backbone, to reach
it, to move a time t5 around and then to go back to site
i. Multiplying the two members of this equation by A’
and summing over ¢t we obtain for F; ;(A) the following



expression:

2 .

(1B ] B,

- 22 ~ ~ () —
Fa) =2 (Mo + 1PV () (7)
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The function ! Hy(t) is the probability of going back to 0
on an half linear chain, starting from 0.

The function Péfg (M) can be computed in an analogous

way by decomposing the probability Féf())(t) in terms of

the functions ' Hy(t) and 2Hy(t) and 1P(§f{)_1)(t).

B. A finite number of holes and walls

This method can be applied to the case of a potential
made of N non-zero elements. To do this, we need an-

other ingredient, the generating function 215((:)0)(570)()\),
representing the probability for the walker to move be-
tween two sites of the backbone of a comb graph made
by a finite backbone and by x infinite fingers. We can ex-
press this function in terms of 1}357;)()\) and of 1P, o()),
as follows [15]: '

(z -, S (A s
2P((r,é)(s,0)()‘) = 1P0,0()‘) 1P,E,s) <5 1P0,o()\)> -

The function 1]5(;70()\) is the generating function of the
probability for the walker to go back to site 0 on a linear
infinite chain where the probability of escaping from site
0 is i instead of %

Exploiting the result (6), we calculate P;;()\), where i
indicates the site of a wall or of an hole, that we can as-
sume located in (0, y), for a random walks problem with

N —1 traps or sources. P;;(\) can be decomposed as in
equations (5) and (7) where ]5(%(/\) can be expressed in
terms of the functions ' Hy, 2Hy, 115T(f§), 2]5((:2))(370). This
can be done by identifying all the sites that correspond
to a wall or to a hole and all the sites where a finger,
containing a wall or a hole, intercepts the backbone. We
have thus solved the random walk problem for the case
with w = 0. We obtain the function P; ;(A, w) by sub-
stituting 2(z,y)(a,y) With 2z y)(ar,y) — w and using the
result (4) we get an expression for the resolvent operator
R(w).

Let us discuss now some problems concerning the do-
main of definition of these functions. The presence of
some complex square roots in the expression of P; ;(\, w)
makes it a multi-valued function. However the resolvent
R(w) is, for its nature, a single-valued function, because
the spectrum of an operator is univocally defined. In ex-
ploiting the result (4) to determine R(w) from P; ;(\, w)
it is therefore necessary to choose the correct branch of
the function. This is obtained by considering that H is

a selfadjoint operator, so that R(w) can have singular-
ities only on the real axis, and satisfying the following
condition:

Pi(0,w) = P, ;(0) =1 VYw.

The knowledge of an analytic expression for some ele-
ments of the resolvent operator R(w) leads us to a local
analysis of the spectrum of the operator H. After calcu-
lating the element R; ;(w) of the resolvent, the points of
divergence of this function will coincide with elements of
the pure points spectrum of H. When the potential U
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FIG. 2: Eigenvalue as a function of the strength of the po-
tential, which is made of only one wall or hole situated at a
distance y = 3 from the backbone.

is made of only one wall or hole we obtain that H has
one and only one proper eigenvalue, which is always out-
side the continuous part of the spectrum. The continuous
part of the spectrum is the same as for the situation with
U = 0 and coincides with the interval [0, 2(1++/5)]. From
our analysis we also get the dependence of the eigenvalue
as a function of the distance y of the wall or hole from
the backbone and of its strength a. It is interesting to
note that the curve of the eigenvalue as a function of a
tends to be constant, as y increases, for values of a in
the interval [0,4] (see for example Fig. 2). This is rather
intriguing, because the value 4 is also the point of sepa-
ration between the region of the continuous spectrum of
measure 1 and the region of so called measure zero [9].

Let us consider now the case of a potential U made
of two non-zero elements. After having computed the
function P; ;(\, w), where ¢ corresponds to a non-zero
element of the potential matrix, we come to the following
results:

e the proper eigenvalues are at most two.

e for some particular values of the variables involved,
that is the positions of the two walls or holes and
their strength, there can be one or even no eigenval-
ues at all. This can happen when the two walls or
holes are close enough and their strength is small.



This result is quite surprising because if there is only one
wall or hole there is always one and only one eigenvalue.

V. DISCUSSION AND CONCLUSIONS

By analyzing the case of the comb lattice, we have
shown how it is possible to analytically determine the
spectrum of the Hamiltonian operator on a complex net-
work. When the potential assumes non zero values only
on a finite subgraph of the considered graph the solu-
tion is reached exploiting the random walk method. The
topological nature of the method allows for its applica-
tion to a vast class of graphs.

The relationship between the motion of the random
walker and the spectral problem for the Hamiltonian can
also be exploited for numerical computations. The ran-
dom walker is naturally implemented as a Monte Carlo
method, thus allowing the analysis of complex potentials
on every finite graph.

The Monte Carlo method consists in the evaluation
of the generating function P; ;(1,w) of a random walker
simulated on a computer.

In the case of the comb lattice the number of localized
states is always less then or equal to the number of non
zero elements in the potential matrix. It will be of great
interest to see if this situation also occurs on other graphs
and if it is possible to devise some regularity in the de-
pendence of the number of localized states as a function
of number, position and strength of holes and walls.

This is strictly related to one of the main open ques-
tions in the study of the localization problem on inhomo-
geneous complex networks, that is whether or not it is
possible to extend the Anderson’s theorem [16] to disor-
dered structures. We think that this problem can be
fruitfully investigated using the Monte Carlo method,
based on the motion of a random walker, to study the
localization over a generic graph with a random poten-
tial.

In the Anderson’s theorem the lattice dimension plays
a fundamental role since, when the dimension is less than
two, a short range disorder is sufficient to induce local-
ization. Heuristic results obtained on several inhomoge-
neous structures strongly suggest that on graphs the cor-
responding relevant parameter is the spectral dimension
and that short range disorder gives rise to localization for
d < 2. It should be noticed that, on regular lattices with
d < 2, one of the main factors inducing localization is the
absence of closed paths. One could suppose this consid-
eration applies even to graphs, since no closed paths are
present on the comb lattice. However, it can be shown
that the spectral dimension can be less than two even in
the presence of closed paths, provided that their number
increases slowly enough with their size, as in the case of
the Sierpinski gasket.

Besides the investigation of a possible extension of the
Anderson’s theorem, a future development of the present
work will be the study of the relationship between the
random walks’ properties and the shape of the eigenvec-
tors of the Hamiltonian.
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