EESEVIER

5 January 1995

Physics Letters B 341 (1995) 355-360

PHYSICSLETTERS B

The general distribution of Lee- Yang zeros in compact lattice QED
I.M. Barbour?, R. Burioni®, G. Salina®

® Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
® Dipartimento di Fisica, Universitd di Roma “La Sapienza”, INFN Sezione di Roma I, I-00185 Roma, Haly
© INFN Sezione di Roma II, Dipartimento di Fisica, Universitd di Roma “Tor Vergata”, I-00133 Roma, Haly

Received 9 September 1994
Editor: R. Gatto

Abstract

In this paper we study the general distribution of the Lee-Yang zeros in the complex mass plane for compact QED. We
determine all the zeros of the partition function at strong, intermediate and weak coupling on a 4* lattice. Our results give a
new picture for the general behaviour of the Lee-Yang zeros for different phases of the system.

1. Introduction

A good understanding of the physical properties of a
statistical system and of its thermodynamic behaviour
can be obtained by studying the complex zeros of its
partition function. The Lee-Yang theorem [1] shows
explicitly that knowledge of the distribution of the ze-
ros of the partition function determines the equation
of state. In particular, the behaviour of the distribu-
tion near the positive real axis (the physical region)
is closely related to the phase structure and its nature
[2]. This kind of analysis has given interesting results
in the study of lattice gauge theories both with and
without fermions [3,4]. In these models the partition
function can be expanded as a polynomial in two crit-
ical parameters, the bare mass ma and the bare gauge
coupling constant g, which are supposed to drive two
different transitions. In particular, by expressing the
partition function as a polynomial in the mass, one
obtains an analogous formulation to that of Lee and
Yang for magnetic systems.

When one studies lattice gauge theories using nu-
merical simulations, the Lee-Yang theorem works as
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follows: the (complex) zeros of the partition function
which tend toward the real axis as the lattice volume
increases give evidence for a phase transition and de-
termine the critical value of the parameter at which it
occurs. Moreover, the scaling with the volume of their
density and of their distance from the real axis pro-
vides information on the genus of the phase transition
and on the value of its critical exponents [5,6].

However the numerical determination of the gross
shape of the zeros is complicated [4]. In a typical
simulation, the degree of the polynomial is of the order
of the number of lattice sites N, which can be large,
varying from 4* to 10* for this kind of simulation
[4.8]. Moreover, the coefficients vary in magnitude
over a huge range and are only measured to some
precision. Hence the determination of the zeros can be
affected by these uncertainties and by the systematic
and rounding errors due to the particular algorithm
used for the root finder.

In this paper we study in detail the general distri-
bution of the Lee-Yang zeros for compact QED on a
4* 1attice at three different values of the coupling con-
stant, 8 =0.0, 8 = 1.5 and 8 =0.885. At 8 =0 the
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system is in a confined phase for all m and at 8 = 1.5
it is in a Coulomb phase for all m. At the intermedi-
ate coupling, 8 = 0.885, there is a critical value of
the mass, m,, at which the system appears to signal
an infinite volume phase transition.

The zeros are found using the mass shift method [ 8]
together with a new algorithm for finding the roots of
the polynomial. This new algorithm avoids the round-
ing errors introduced by deflation of the polynomial.

Using this method we are able to determine with
very good accuracy the complete set of roots for the
partition function at strong, weak and intermediate
coupling. The value of the critical mass agrees with
previous results [ 8]. However the general shape of the
zeros obtained with the new method presents a char-
acteristic pattern which agrees with rigorous theorems
[ 13] in the strong coupling region but gives an unex-
pected behavior at intermediate and weak coupling.

The paper is organized as follows:

In Section 2 we review the expansion of the partition
function for compact U(1) as a polynomial in the
fermion mass.

In Section 3 we discuss the mass shift method used
in [8] and introduce the new algorithm for finding the
zeros of the polynomial. This algorithm (the contour
method) is based on standard Cauchy theorems of
integration in the complex plane.

In Section 4 we discuss the results obtained for the
general distribution of the zeros on a 4* lattice.

We emphasize that our results on the 4 lattice give
only the general distribution of the zeros for differ-
ent phases of the system. The detailed nature of these
phases and the critical indices can only be determinate
on much Jarger lattices. The procedures described be-
low can be extended to such lattices ([14,15]).

2. The partition function of compact U(1) as a
polynomial in the fermion mass

We regularise our theory on the lattice by using
the Wilson action Sg[{U}, 8] for the compact gauge
fields and the Kogut-Susskind action Sg[{U},m] for
the fermions. In this formulation we have four flavours
degenerate in mass. Integration over the Grassmann
fermionic fields gives the determinant det M[{U}, m],
where M is the fermion matrix. By introducing the
updating fermion mass, myp, (see [8]) and recalling

the irrelevance of overall multiplicative factors in the
partition function, we define the partition function as:

[1dU] det(M[m])e=Sd8]
J1dU] det(M[mg])e—5F)
det(M[m))
det(M[mp])
f[dU] det(M[mp])e 518

_<det(M[m])> (1
det(M[mo]) / pi o 1

This just states that the partition function is the
vacuum expectation value of the determinant ratio
det M[m] /det M[myq]. This ratio is a polynomial in
m? proportional to the characteristic polynomial of
M[m = 0]. Its coefficients are measured over an en-

semble of configurations generated by hybrid Monte
Carlo simulation, using the probability weight

P[{U},mg,B] =
det M[{U}, mp]e—Scl{U}.B]
[ 1dU 1 det M[{U"}, mg]e=ScL{U'LA1"

Z[m,B] =

f1dU] det(M[my))e %Al

(2)

On each configuration of the ensemble, the Lanczos
algorithm, without reorthogonalisation, is used to find
all the eigenvalues of the massless fermion matrix
M[m =0]. From these eigenvalues the coefficients of
the polynomial and det(M[mgp]) can be easily gener-
ated. For details, the reader is referred to [8].

By tuning mga to be near the critical mass
mea we enforce the weight of Eq. (2) to over-
lap strongly with the distribution of the observable
det M[m] /det M [mg]. Thus, we can obtain numeri-
cally reliable results for m close to my.

3. The determination of the zeros

The determination of the gross shape of the zeros
is non-trivial. On a lattice with N sites, the partition
function is a polynomial of order N/2 in m?, and the
range of the coefficients is large [8]. With this kind
of data, standard root finders suffer from several prob-
lems [4]. One of the most important is that unless the
starting point is very near a complex zero, the root
finder is not expected to converge. This problem is
enhanced when one has to face huge variation in the
values of the coefficients of the polynomials. More-
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over, once one finds the zero, the usual deflation algo-
rithm lowers the precision at each step. After several
deflations the results become unreliable.

On the other hand one also has to consider that
systematic and statistical errors in the coefficients may
alter the shape of the zeros [7].

In [8] a method for finding the complex zeros of
Z[m, B] was presented, based on a standard root find-
ing algorithm developed by Muller and on a second
arbitrary mass parameter 7, the “mass shift”. This pa-
rameter was introduced in order to solve some of the
problems previously cited.

We briefly recall how the “mass-shift” method
works. Using the properties of the Kogut-Susskind
fermion matrix for a finite lattice of size N we can
express det M[m] as a polynomial in (m? — m?);
essentially it is a Taylor expansion around . There-
fore, the ratio of interest det(M[m])/det(M[mp])
is written as

N/2 N
det(M[m]) -3 e (m? —m*)"

det(M[mo]) ~ <=~ det(M[mo))
N/2
=Ze6n(m2~m2)" (3)
n=0
where
cn = x, — Indet M[myp] . (4)

The partition function becomes a finite polynomial in
m:

N/2
ZIm, Bl = (€% pimp (M — AD)"
n=0
N2
= eCr(m’ — )" (5)
n=0

where the logarithm of the averaged coefficients C, is
defined through the equation:

eCr = (ec"),,[mom . (6)

The parameter m is a shift that does not alter the
zeros of the partition function. The mass-shift method
attempts to solve the problems previously cited in
the following way. We used the root finder based on
Muller’s algorithm on each of the polynomials arising

from different choices of i to evaluate the zeros in
m near m. The same zeros should appear for adjacent
choices of 7 if they are true zeros of the polynomi-
als. Indeed m works as a starting point for a Taylor
expansion of the partition function in (m? — m?): if
(m?* — m?) is small enough the last terms in the poly-
nomial give negligible contributions. For a given 7 it
is not possible to determine accurately all the zeros of
the partition function but only those which are in the
neighbourhood of .

In [8] we used several real and imaginary values of
m. Then the coefficients of the polynomial are real. In
order to study the whole distribution of the zeros one
needs to introduce complex values of #. This means
that the coefficients can be complex. Therefore we
need a root finding algorithm which can efficiently
handle a polynomial with complex coefficients and
which avoids the errors associated with deflation. We
briefly outline the main steps of this method.

Suppose that F(z) is a differentiable function! in
a domain R containing a simple loop L and all points
inside L. Then if F(z) has no poles or zeros on L:

2 ] “CF)
L

LY PR C Yy (7)

where N is the number of zeros of the function F(z)
in the region R and P is the number of poles, each
counted according to its multiplicity.

Eq. (7) can be used to determine the number of ze-
ros of F(z) present in the region R since P = 0 for
a polynomial. Then the numerical value of each zero
is found by minimizing |F(z)| in R. The vanishing
of |[F(z)| at the minimum is cross-checked by calcu-
lating the integral on a little circle around the point
returned by the minimization. If the integral is equal
to unity a standard method (for example Laguerre)
polishes the numerical value of the zero and increases
its precision.

In particular, we divide the complex plane into re-
gions of a given size and calculate the number of the
zeros in each region. For each region, starting from a
random point we minimize the function |F(z)| stor-
ing the path history to avoid superposition. When a
minimum is reached, we verify and polish it. The pro-

UIn our case F(z) is the partition function, Z, considered as an
analytic function of m?.
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cedure is iterated till all the zeros inside each region
are found.

Clearly this procedure is not affected by the prob-
lems caused by deflation and slow convergence. It still
suffers, though, from the fact that, as one looks for ze-
ros further and further away from a given m, more and
more coefficients of the polynomial control the posi-
tion of the zero. Thus the value of Z will be sensible
upon delicate cancellations among higher and higher
powers in the polynomial expansion (5). In this way
spurious zeros may appear. Only the zeros that repro-
duced themselves as m? is varied are taken as genuine
zeros of the partition function.

There are flaws in the results presented in Ref. [ 10]
arising from the above effect which we discuss at the
end of Section 4. We present the corrected results be-
low.

4. The gross shape of the Lee-Yang zeros

Simulations were performed on a 4* lattice at 8 =
0.0, B8 = 0.885 and B = 1.5 with periodic bound-
ary conditions for the gauge fields and antiperiodic
boundary conditions for the fermion fields. Configu-
rations were generated using the hybrid Monte Carlo
algorithm with about 400 iterations to thermalise the
system from a cold start. Measurements of the coeffi-
cients were made at intervals of ~ O(1) in molecular
dynamics time. 400 measurements were made at 8 =
0.0 and 300 at 8 = 0.885 and 8 = 1.5. The evolution
of the zeros was monitored every 50 measurements.

Typically we show the zeros obtained from the aver-
age over our finite ensemble at each 8. However, some
indication of their convergence is given by studying
their stability as the simulation progressed.

In Fig. 1A we show the 256 zeros of the partition
function at 8 = 0.0. We used 75 values of # to scan
the relevant region of the complex mass plane. Apart
from a few zeros with very small real part, they all lie
on the imaginary axis. In Fig. 2 we show the behavior
of a zero with increasing number of measurements.
The real part decreases indicating that the small real
parts associated with some zeros are a finite statistics
effect.

It is known that at 8 = 0.0 the partition function for
compact QED is equivalent to the partition function of
a monomer-dimer system [11]. In this case the zeros
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Fig. 1. Complex zeros for a 4* lattice at three different 8 values.
A) The 256 complex zeros at 8 = 0.0. B) The 256 complex zeros
at B =0.885. C) Some of the complex zeros at 8 =1.5.
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Fig. 2. Behaviour of a given complex zero at 8 = 0.0 for different
numbers of measurements. The results are superimposed: squares
for the zeros obtained after 300 measurements, diamonds after
350 measurements and crosses after 400 measurements.

are known to be pure imaginary [12,13]. Our data
agree with this analytical result.

In Fig. 1B we show the 256 zeros of the partition
function at 8 = 0.885 obtained by using 95 different
values of 7 to span the complex plane. Some of the
zeros have clearly migrated into the complex plane
forming a curve tending to pinch the real m axis. This
evidence for a phase transition at m.a = 0.194 is in
agreement with the results of [8].

The zeros close to the real axis control any chiral
phase transition. They also are given primarily by the
coefficients in the polynomial which depend on the
longest loops of the gauge fields and thus reflect the
non perturbative features of the theory [9,10]. For
example the chiral susceptibility is given by:
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Fig. 3. The chiral susceptibility as a function of ma for 8 = 0.885
on a 44 lattice: the susceptibility in arbitrary units derived from the
whole partition function (solid line) and after the subtraction of
the contribution of the zeros closest to the real axis (dashed line).

X=amaF(ma)9 (8)

where F(ma) is the free energy of the system.
Since the partition function factorizes as:

Z(ma) = [[(ma —z) (9)

where the z; are its complex zeros, the free energy can
be presented as a sum over distinct contributions, each
one depending on a different zero:

F(ma) = Zlog(ma ) (10)

and hence the part responsible for the discontinuity in
the susceptibility can be isolated. In Fig. 3 we present a
comparison of the chiral susceptibility with and with-
out the contribution of the two symmetric m?-zeros
closest to the real axis at 8 = (0.885. It is evident that
the divergent part of the chiral susceptibility is asso-
ciated with these zeros, which are then those possibly
leading to the expected phase transition.

The new analysis shows that, apart from this curve
of complex zeros cutting the real axis, the other zeros
are imaginary. Note, in the region where the zeros tend
to be imaginary, those with small real part behave as at
strong coupling: with increasing measurements their
real part decreases. The curve of zeros around m =0
is stable.

In Fig. 1C we show the zeros of the partition func-
tion at 8 = 1.5 obtained using 30 different values of
m. Not all zeros were found because of their high den-

sity causing effective degeneracies within our numer-
ical accuracy. However no zeros were found with sig-
nificant real part and our results are consistent with all
the zeros at this weak coupling being imaginary with
magnitude between 0.93 and 1.92. This scenario does
not agree with the one suggested in [8,10], where the
root-finder used for the analysis gave evidence of a
line of zeros in the complex plane paralle] to the real
axis. This line is not present anymore in the new anal-
ysis and was due to the poor accuracy of the old root-
finder. In the free theory with antiperiodic boundary
conditions on the fermions, the zeros are purely imag-
inary and symmetric.

5. Conclusions

In this paper we have presented a careful analysis
of the Lee-Yang zeros in the complex mass plane for
compact lattice QED on a 4 lattice at different gauge
couplings.

The behaviour of the distribution of the zeros is
found but we can say nothing about their scaling be-
haviour. Studies are in progress on large lattices to
determine the finite size scaling of the zeros close
to the real m-axis using the method described above
([14,15]).

Using a dedicated root finder we were able to de-
termine with very good accuracy the whole set of ze-
ros for the partition function of the model. The critical
mass found at intermediate coupling 8 = 0.885 agrees
with that previously obtained. However the general
shape of the zeros shows some unexpected and inter-
esting features.

We can distinguish three distinct distributions for
the zeros. At strong coupling all the zeros are imag-
inary (as predicted by [13]) and signal a possible
phase transition at m, = 0. As the coupling decreases
the zeros close to the real axis migrate into the com-
plex plane and possibly signal a transition at non-zero
fermion mass and intermediate coupling. Apart from
the critical cut, no zeros were found outside the imag-
inary axis. This peculiarity can be inferred only by a
accurate knowledge of the complete zeros set. At given
critical intermediate coupling they presumably retreat
into the complex plane and, as the coupling decreases
further, they all become imaginary again. Again this
situation appears only after an accurate analysis of the
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distribution of the zeros and was not present in the
previous analysis.
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