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Abstract

It is known that on regular lattices the spherical model is the large-n limit of classical Heisenberg O(n) models for all
temperatures. Here we give a rigorous proof of the analogous result holding in the critical regime on disordered
structures (representing e.g. amorphous materials, polymers, fractals). In particular, the large-n limit of critical exponents
for the Heisenberg model coincides with the critical exponents of the spherical model. These can be exactly calculated and
are shown to depend only on the spectral dimension d of the structure. In addition, when d < 2, as it is the case for many
real structures, the critical exponents of all O(n) models coincide with the corresponding ones for the spherical model.
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The study of magnetic-spin models on noncrystalline
structures is an intriguing and complex problem in stat-
istical mechanics. This is fundamentally due to the lack of
translational invariance and of a natural definition for
the system dimensionality. The former gives rise mainly
to technical difficulties, arising from the impossibility of
using such a powerful tool as Fourier transforms. The
latter involves some deeper questions concerning the role
of large-scale geometry in determining the critical behav-
ior in phase transitions. Indeed, the dimension of a crys-
tal lattice is known to encode all relevant information
about long-range topology: for a given symmetry of the
spin space it is the only parameter ruling the existence of
finite-temperature phase transitions and affecting the
critical exponents. Therefore, one of the most challenging
tasks for theoretical physicists consists in finding (if any)
a generalized dimension playing a similar role for non-
crystalline structures and easily measurable by experi-
ments on real systems.
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Recently, these problems have been successfully
addressed using graph theory techniques. A graph, ie.
a network composed of sites and links connecting near-
est-neighboring sites, is the most suitable geometrical
model to describe an irregular magnetic system consist-
ing of spins coupled by exchange interactions. This
approach gives very interesting results when dealing with
classical ferromagnetic Heisenberg models with O(n)
symmetry, due to the deep relations between their critical
behavior and low-frequency vibrational spectrum.

In particular, the spectral dimension d, describing the
spectral density p(w) of the network in the limit w — 0
according to p(w) ~ w?™!, appears to be the right gener-
alization of Euclidean dimension. Not only can it be
easily measured by well-established experimental tech-
niques, such as neutron scattering, but also it is known to
be deeply related to phase transitions of continuous sym-
metry spin systems. Indeed, the possibility of spontan-
eous magnetization at finite temperature for
ferromagnetic Heisenberg models on generic graphs de-
pends only on 4 being greater than 2 [1,2], and the
critical exponents of the spherical model are known as
simple functions of d only [3]. On regular lattices the
spherical model has played an important role owing to
its solvability in any dimension and its connection to the

0304-8853/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved

PII S0304-8853(97)00668-9



154 R. Burioni et al. [ Journal of Magnetism and Magnetic Materials 177-181 (1998} 153~154

Table 1
Critical exponenis of the spherical model on a graph of vibra-
tional spectral dimension 4
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O(n) Heisenberg models. In fact it is well known [4, 5]
that for n — oo all thermodynamical quantities of the
Of(n) model tend to those of the spherical model, provid-
ing the basis for the 1/n expansion. Here we present how
this basic result can be extended to these two statistical
models defined on a generic infinite graph.

We are dealing with the standard classical O(n)
Heisenberg Hamiltonian

H=—-J) 885, 6y
iy

where the sum extends to all links of the graph, J > 0 and

S; is an n-dimensional vector normalized by §;-8; = n.

This constraint can be reformulated in a standard way by

introducing an independent Lagrange multiplier /; at

each site, so that the partition function reads

Z = J‘l—’[ d"Si d)»i exp[ﬁJ z Si'Sj + ZZ Ai(Si'Si - H)J

; 5 ]
@

and the spins are now unconstrained. The integral over
the spin is now Gaussian and can be calculated exactly.
The integrals over 4; are estimated in the limit n —» oo by
replacing them with the integrand evaluated at 4; = 1,
where 7; satisfy the appropriate saddle-point equations.
In the thermodynamic limit the number of equations is
infinite, but on crystal lattices translational symmetry
allows to reduce them to just a few. These coincide with
the saddle-point equations obtained in the thermodyn-
amical limit for the spherical model which, on lattice with
simple elementary cell, is defined by the Hamiltonian

H= —J} ¢:¢; 3

<Ei>
where ¢; are real scalar spin variables with the constraint
Y7 =N and N is the number of lattice sites. This

provides the equivalence of the two models for any tem-
perature. Evidently, no such reduction for the infinite set
of equation is possible on a noncrystalline structure.
However, an analogous reduction does take place also on
a generic graph if one considers the behavior of the
system asymptotically near the critical point.

Indeed, the solution of the saddle-point equations pro-
viding the configuration of the Lagrange multipliers near
the critical temperature is determined by the leading
singularities of the terms appearing in the equations. It
can then be rigorously proven [6] that the singular
behavior is unique and the saddle-point equations again
coincide, in this limit, with those of the spherical model
defined on the graph by the Hamiltonian Eq. (3) with the
generalized spherical constraint Y z;¢f = N where z; is
the coordination number of site i. The physical explana-
tion relies on the nature itself of a critical point. The
divergence of the correlation length implies that the geo-
metrical structure of the graph affects the thermo-
dynamics only through large-scale averages for which the
iocal details of the graphs are washed out regardless of
their irregularities. This result, far from being purely
mathematical, allows to exactly determine all critical
exponents of the O(co) Heisenberg model, since they
coincide with those of the spherical model on graphs, as
given in Table 1. )

We stress that these critical exponents depend only on
the spectral dimension d. They provide the starting point
for the 1/n expansion on a generic graph. Furthermore, in
the case of those particular graphs with 4 < 2 (and hence
T.=0) which allow for an exact solution, the critical
exponents exactly coincide with those of the spherical
model for any n. More generally it can be proven by
heuristic arguments that this is the case for all structures
having d < 2. This is particularly interesting, since till
now, ali real structures for which d has been measured
turn out to have d < 2. The experimental study of the
behavior of such systems at low temperature should
provide a good check of this result.
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