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Tight-binding models on branched structures
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In this paper we analyze the properties of electrons in noncrystalline structures, mathematically described by
graphs. We consider a tight-binding model for noninteracting quantum particles and its perturbative expansion
in the hopping parameter, which can be mapped into a random-walk problem on the same graph. The model is
solved on a wide class of structures, called bundled graphs, which are used as models for the geometrical
structure of polymers and are obtained joining to each point of a ‘‘base’’ graph a copy of a ‘‘fiber’’ graph. The
analytical calculation of the Green’s functions is obtained through an exact resummation of the perturbative
series using graph combinatorial techniques. In particular, our result shows that when the base graph is a
d-dimensional crystalline lattice, the fibers generate a self-energy of pure geometrical origin in the base
Green’s functions.
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I. INTRODUCTION

The properties of electrons in crystals directly arise fro
the translation invariance of Bravais lattices through
Bloch theorem. Both the energy spectrum and the eigens
are described in terms of vectors of the reciprocal lattices
the main mathematical point in this approach is the use
Fourier transform to diagonalize the lattice Hamiltonia
However, most condensed-matter real structures are not c
tals and this simple and appealing picture does not ap
This is the case of amorphous materials, glasses, polym
fractals, and biological systems in general; due to the lac
translation invariance, the Bloch theorem does not hold
the Fourier transform cannot be used as a diagonaliza
technique. The geometrical complexity can change dram
cally the properties of electrons.

The tight-binding model is the simplest description
electrons propagating on discrete structures and very gen
techniques have been developed to solve the model an
obtain the analytical expression for Green’s functions.1 On
noncrystalline structures, where reciprocal space techniq
cannot be applied, one has to use direct numer
diagonalization2 and real-space approaches. In particular,
perturbative expansion in the hopping parameter maps
problem into a walk expansion on the structure, which m
be resummed to obtain the exact expression for the Gre
function.3,4 This resummation is nontrivial on noncrystallin
structures. As for the analytic approach, on fractal latti
renormalization and decimation techniques can be used
to scale invariance5 but on general inhomogeneous and d
ordered networks an alternative method is needed. On a
neric graph, this can be found exploiting the graph theor
cal formulation of walk statistics which provides ve
powerful techniques for the calculation of the resummed
ries. In this paper we will use a generalization of the rando
walk approach to analytically solve the tight-binding mod
for a wide and interesting class of branched networks.

The graph theoretical formulation has been so far succ
fully applied to vibrational dynamics, diffusion and sp
models on general discrete structures, where graphs ar
PRB 610163-1829/2000/61~13!/8614~4!/$15.00
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troduced to describe the topology of interactions.6,7 The
graphs we will consider here have already been studied f
these points of view and they showed very peculiar and
teresting properties. They are known as bundled structu
and they are obtained through the iterative composition
simpler graphs.8 For these networks one can introduce
engineering which allows us to build a graph with give
properties with the composition of properly chosen stru
tures. Bundled structures are built by connecting afiber
graph to each point of abasegraph and we will see that th
presence of the fibers gives rise to a self-energy in the tig
binding Green’s functions of the base. This means that
particles moving on the base, though described by a no
teracting Hamiltonian, experience an interaction whose
gin is purely geometrical.

II. MODEL

A generic system composed of atoms and electrons ju
ing from site to site can be described by a quantum Ham
tonian on a graph. A graph is a set of points, represen
atoms, connected by links when a nonzero jumping proba
ity for the electrons exists. The free Hamiltonian for an ele
tronic system on a graph can be written by assuming,
usual, the electron motion on the discrete structure to
determined by the overlap between the atomic wave fu
tions of two different sites. In the tight-binding approxim
tion, the superposition between the wave functionsf j and
the atomic potentials relative to two different sites are diff
ent from zero only if the two sites are connected by a lin
The Hamiltonian we obtain is then

H52(
i , j

t i j ci
†cj2(

i
aici

†ci , ~1!

where ci
† (ci) is the creation~annihilation! operator of a

particle on sitei. The parameterst i j andai[( lail are given
by
8614 ©2000 The American Physical Society
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t i j 52E ddrf i* ~r !@EAT1Vj~r !#f j~r !, ~2!

ail 52E ddr uf i~r !u2Vl~r !, ~3!

Vi(r ) being the potential relative to sitei andEAT the atomic
energy level. Considering the simplest caset i j 5t and ai j
5a one obtains for the tight-binding Hamiltonian

H52t(
i , j

Ai j ci
†cj2a(

i
zici

†ci , ~4!

whereAi j is the (i , j ) entry of the adiacency matrix of th
graph,

Ai j 5H 1 if i and j are nearest neighbors

0 otherwise

andzi5( jAi j is the coordination number~i.e., the number of
nearest neighbors! of site i. When the structure is a regula
lattice (zi5z) the local energy term is a constant and o
recovers the usual tight-binding model. For a more gen
structure,zi varies from site to site and the local term of E
~4! must be taken into account.

The solution of the tight-binding model on graphs pr
sents two main problems. First, on a generic graph, du
the lack of translation invariance, the Fourier transform d
not diagonalize the adiacency matrixAi j appearing in the
hopping term. Moreover, the diagonal terms in Eq.~4!, gen-
erated by the nonequivalence of graph sites, are nontr
and their matrix does not commute withA itself.

The perturbative expansion in the hopping parametet1

provides a general formal procedure for calculating
Green’s functions of the model defined by Eq.~4! on a ge-
neric graph: the Green’s functions are expressed as a
over weighted paths, analogous to a path integral. We
briefly recall this expansion in the algebraic graphs the
language.

The Green’s functions are defined by

Gi j ~v!52 i E exp~ ivt !^0uTci~ t !cj
†~0!u0&dt. ~5!

Let us start from the ‘‘atomic’’ unperturbed Hamiltonian o
tained by takingt50 in Eq. ~4!. Then the corresponding
Green’s functions are

Gi j
AT~v!5

d i j

v1azi
. ~6!

Expanding in the hopping term, the tight-binding Green
function can be expressed as

Gi j ~v!5 (
n50

`

~2t !nGi j
(n)~v!, ~7!

where thenth-order coefficientGi j
(n)(v) is the sum over all

n2steps walks, starting ini and ending inj, of the products
of the atomic Green’s functions on all sites visited in ea
walk. Calling $Wn( i j )% the ensemble of all these walks, w
have
al

-
to
s

al

ll

m
ill
y

h

Gi j
(n)~v!5 (

$Wn( i j )%
)

kPWn( i j )
Gkk

AT~v!. ~8!

The last expression is formally similar to the probabili
functionPi j (n) for a random walk with traps and sources o
the graph defined by the jumping probabilities

pi j 5
Ai j

zi1d
, ~9!

whered is the decay parameter, taking into account the eff
of traps and sources. Exploiting this similarity we obtain
exact map between the tight-binding Green’s functions a
the random-walk generating functions P̃i j (l)
[(n50

` lnPi j (n):

Gi j ~v!5
1

v1azj
P̃i j ~l! ~10!

with l52t/a andd5v/a.
We point out that, in spite of formal similarity, generatin

functions have very different physical meanings in t
above-mentioned problems. Indeed, in random-walk the
they are introduced as a pure computational tool andl has
no physical meaning. As for tight-binding, generating fun
tions have a direct physical interpretation: they are the
summation of the perturbative expansion in the hopping
rameter andl is a function of the parameters appearing
the Hamiltonian.

Now, random walks are one of the most studied physi
problems on graphs and analytical techniques are known
lowing exact solutions for generating functions on very ge
eral families of discrete structures. This is the case for a w
class of graphs called bundled structures, which we will c
sider in the next section.

III. BUNDLED STRUCTURES

Bundled structures are graphs obtained by joining to e
point of a graph calledbasea copy of another graph calle
fiber. A typical bundled structure is the comb lattice show
in Fig. 1, where both base and fiber are linear chains~we
shall call them backbone and teeth, respectively!. The main
random-walks quantities for a generic bundled structure
be related to the corresponding ones for its base and its
by analytical techniques.8 In the following we shall consider
only base graphs with constant coordination number.

FIG. 1. The comb lattice.
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We will give the solution of the tight-binding problem o
a bundled structure in terms of the solution for the base
the fiber graphs. We callGii (v) and f i i (v) the local Green’s
functions of the base and the fiber, respectively, and we a
lyze the variation of the local Green’s function of the ba
when it is ‘‘dressed’’ by the fibers. Let us consider first t
variations of the Green’s functions relative to the fibers c
nected to the base in their origini 50. In this case the coor
dination numberz0 increases by a quantity that is simply th
coordination number of the joining site on the base. It f
lows that the first effect of the joining is the introduction
the fiber’s Hamiltonian of an impurity with energy2aDz
and the local Green’s function relative to the sitei 50
becomes1

F00~v!5
1

aDz1 f 00
21~v!

. ~11!

Let us now consider the problem of computing the lo
Green’s function for the base. Using the walks statistics fo
n-step walk starting and ending at the same base point
can distinguish between thenB steps on the base and th
nF5n2nB steps on the fibers. ThenF steps can also be
divided in (nB11) groups of stepsn1 , . . .nnB11. Each

FIG. 2. Local spectral density for the comb lattice, for differe
valuesa/t, greater and lower than 1, as discussed in the text:
a/t.1 ~here we have chosena/t53/2) there is a gap in the spectr
density~a!, while if a/t,1 ~herea/t51/2) the gap closes~b!.
d

a-

-

-

l
a
e

group represents the sequence of steps on a fiber betw
two steps on the base. Notice that some of these groups
also be empty.

Let us callC0(nB) the number ofnB-steps closed walk on
the base. Thenth order of the perturbative expansion in th
hopping parameter for the local Green’s function relative
one of the base sites is

G00
(n)~v!5 (

nB50

`

C0~nB!~2t !nB(
n1

••• (
nnB11

F00
(n1)

~v!•••

3•••F00
(nB11)

~v!dn,nB1 (
1

nB11

ni
. ~12!

Notice that the only constraint on theni is that their sum
must ben; therefore, after summing overn, all the sums in
Eq. ~12! become independent. Each sum overni gives, by
definition, the local Green’s function for the fiber with a
impurity at the origin,F00(v). We then obtain

G00~v!5(
nB

C0~nB!~2t !nB@F00~v!#n. ~13!

Now the perturbative expression~8! when all sites of the
graph have the same coordination number is simply given

G00~v!5(
n

Cn~2t !n@GAT~v!#n. ~14!

Comparing the last two expressions we find the recipe
building the local Green’s functions on the base of a bund
structure. Indeed, they can be obtained by replacing in
base Green’s function the expression of the atomic Gr
function with that of the fiber, where the change ofzi in i
50 has been taken into account. In this way, attachin
fiber on each site of a graph is equivalent to considering i
composed of ‘‘dressed atoms,’’ described by the lo
Green’s function of the fiber.

When the base is translation invariant and the fiber i
generic graph, this ‘‘dressed atom picture’’ is more evide
In this case, considering the base’s sites only, we can
scribe the spatial dependence of the Green’s functi
through the Fourier transform. Since each site of the bas
dressed with the same graph fiber, the spatial dependenc
the base is the same as that of the undressed base g
Indicating withG(k,v) the Fourier transform ofGi j (v) ( i , j
belonging to the base!, we get

G~k,v!5
1

v2e~k!2$v2@F~v!#21%
, ~15!

wheree(k) is the Fourier transform of the hopping matrix o
the base. It is clear from expression~15! that the effect of the
fiber can be described as a ‘‘self-energy’’ in the Gree
function on the base. A free model on a bundled structur
equivalent, as far as the base sites Green’s functions
taken into account, to a model with an interaction genera
by the fiber geometry.

To describe the effects of the ‘‘fibering’’ in the bundle
structures, we study only local properties. Indeed,
bundled structures in the thermodynamic limit reduce to th
fiber graphs and the quantities relative to the ‘‘bulk’’ of

r
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bundled structure coincide with those of the fiber grap8

Therefore we will analyze the behavior of the local spec
density on the base:

r~v!5
1

p
sgn~v!Im@G00~v!#. ~16!

This quantity is commonly used to describe the propertie
impurity models, and we expect that it contains most of
information relative to the effects of dressing the base’s s
with the fibers.

As an example we present in Fig. 2 the behavior of
local spectral density on the comb lattice, for different valu
of the ratioa/t. Whena/t.1, the particle gains in energy i
it is delocalized on the backbone only, since the backb
sites have the largest coordination number. The spectral
sity is composed of two branches, separated by a gap.
first one, whose shape is similar to that of a one-dimensio
1D chain, corresponds to states delocalized on the backb
the other branch, which is defined for higher values ofv,
corresponds to a delocalization on the teeth. On the o
hand, whena/t,1 the gain in energy if the motion is limite
on the backbone sites is not enough and the two bran
join. Part of the ‘‘1D-like’’ band is shifted to the right of the
other branch of the curve. In the ‘‘dressed-atom picture’’
have described above, the motion on the teeth can be in
-
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preted as due to the inner states of the composite base at
Therefore the different behaviors of the local density
states describe the energetic competition between these
states and the Bloch states on the base.

IV. CONCLUSIONS

In this work we used an alternative technique for the c
culation of Green’s functions of noninteracting quantum p
ticles on noncrystalline structures in the tight-binding a
proximation, by resumming the perturbative expansion in
hopping parameter. We applied it to a class of branched
works known as bundled structures through exact comb
torial calculations based on random walk statistics. The a
lytical results show that the geometrical effect of branche
equivalent to the addition of a suitable self-energy on
base structure. This phenomenon suggests that in genera
influence of complex geometry on free particles could
viewed as the introduction of a nontrivial interaction in
simpler geometry. We expect to be able to obtain analy
expression for the Green’s functions on several classe
graphs by this combinatorial technique applied to t
random-walk generating functions. As a final observati
the perturbative expansion in the hopping parameter can
be used for strongly interacting systems with a local inter
tion, as the Hubbard model.9 The full knowledge of this
graph-theoretical technique in real space on branched gr
represents a first step in the developement of approa
based on hopping expansions for the study of interac
models on inhomogeneous structures.
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