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In this paper we analyze the properties of electrons in noncrystalline structures, mathematically described by
graphs. We consider a tight-binding model for noninteracting quantum particles and its perturbative expansion
in the hopping parameter, which can be mapped into a random-walk problem on the same graph. The model is
solved on a wide class of structures, called bundled graphs, which are used as models for the geometrical
structure of polymers and are obtained joining to each point of a “base” graph a copy of a “fiber” graph. The
analytical calculation of the Green'’s functions is obtained through an exact resummation of the perturbative
series using graph combinatorial techniques. In particular, our result shows that when the base graph is a
d-dimensional crystalline lattice, the fibers generate a self-energy of pure geometrical origin in the base
Green'’s functions.

[. INTRODUCTION troduced to describe the topology of interactifrisThe
graphs we will consider here have already been studied from
The properties of electrons in crystals directly arise fromthese points of view and they showed very peculiar and in-
the translation invariance of Bravais lattices through theteresting properties. They are known as bundled structures
Bloch theorem. Both the energy spectrum and the eigenstaté§d they are obtained through the iterative composition of
are described in terms of vectors of the reciprocal lattices an@impler graph$. For these networks one can introduce an
the main mathematical point in this approach is the use ofngineering which allows us to build a graph with given
Fourier transform to diagonalize the lattice Hamiltonian.Properties with the composition of properly chosen struc-
However, most condensed-matter real structures are not cry8ires. Bundled structures are built by connectinditeer
tals and this simple and appealing picture does not applydraph to each point of hasegraph and we will see that the
This is the case of amorphous materials, glasses, polymerlesence of the fibers gives rise to a self-energy in the tight-
fractals, and biological systems in general; due to the lack opinding Green’s functions of the base. This means that the
translation invariance, the Bloch theorem does not hold an@articles moving on the base, though described by a nonin-
the Fourier transform cannot be used as a diagonalizatiofgracting Hamiltonian, experience an interaction whose ori-
technique. The geometrical complexity can change dramati@in is purely geometrical.
cally the properties of electrons.
The tight-binding model is the simplest description of
electrons propagating on discrete structures and very general Il. MODEL

techniques have been developed to solve the model and to 5 generic system composed of atoms and electrons jump-
obtain the _analytlcal expression for'Green’s functlbr@n. ing from site to site can be described by a quantum Hamil-
noncrystalline structures, where reciprocal space techniquggnian on a graph. A graph is a set of points, representing

cannot be applied, one has to use direct numericalioms, connected by links when a nonzero jumping probabil-
diagonalizatiofiand real-space approaches. In particular, theyy for the electrons exists. The free Hamiltonian for an elec-

perturbat_ive expansion in the hopping parameter maps th€onic system on a graph can be written by assuming, as
problem into a walk expansion on the structure, which mus{,q 5|, the electron motion on the discrete structure to be
be resummed to obtain the exact expression for the Greengaiermined by the overlap between the atomic wave func-
function# This resummation is nontrivial on noncrystalline tions of two different sites. In the tight-binding approxima-
structures. As for the analytic approach, on fractal Iatticeqion, the superposition between the wave functigfjsand

renormalization and decimation techniques can be used dyge atomic potentials relative to two different sites are differ-
to scale invariancebut on general inhomogeneous and dis-gnt from zero only if the two sites are connected by a link.
ordered networks an alternative method is needed. On a 96+ Hamiltonian we obtain is then

neric graph, this can be found exploiting the graph theoreti-
cal formulation of walk statistics which provides very
powerful techniques for the calculation of the resummed se- + N
ries. In this paper we will use a generalization of the random- H=-— |§J: tijcici— Z aciCi, @
walk approach to analytically solve the tight-binding model '
for a wide and interesting class of branched networks.

The graph theoretical formulation has been so far successvhere ¢/ (c;) is the creation(annihilation operator of a
fully applied to vibrational dynamics, diffusion and spin particle on sitd. The parameterg; anda;==,a;, are given
models on general discrete structures, where graphs are iby
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V;(r) being the potential relative to siteindE 41 the atomic
energy level. Considering the simplest cdage=t and a;;
=a one obtains for the tight-binding Hamiltonian

H=—tX Ajclc—aX zclc, 4) R R B R A R
1] i
whereA;; is the (,j) entry of the adiacency matrix of the FIG. 1. The comb lattice.
graph,
1 ifi andj are nearest neighbors G w)= > I Gi(w. 8

A= (i)} keWa(ii)
Y10 otherwise L . .
The last expression is formally similar to the probability

andz;= X ;A;; is the coordination numbét.e., the number of  function P;;(n) for a random walk with traps and sources on
nearest neighborof sitei. When the structure is a regular the graph defined by the jumping probabilities

lattice (z;=2z) the local energy term is a constant and one

recovers the usual tight-binding model. For a more general A

structurez; varies from site to site and the local term of Eq. Pi=z+a ©

(4) must be taken into account. ) o
The solution of the tight-binding model on graphs pre_whered is the decay parameter, taking into account the effect

sents two main problems. First, on a generic graph, due t8f traps and sources. Exploiting this similarity we obtain an
the lack of translation invariance, the Fourier transform doe§*act map between the tight-binding Green’s functions and
not diagonalize the adiacency matu; appearing in the the  random-walk  generating  functions Pj;(\)
hopping term. Moreover, the diagonal terms in B4, gen- =X/ _\"Pj;(n):
erated by the nonequivalence of graph sites, are nontrivial
and their matrix does not commute wighitself.
The perturbative expansion in the hopping parameter
provides a general formal procedure for calculating all
Green’s functions of the model defined by Ed) on a ge- With A=—t/a andd=w/a. o _
neric graph: the Green’s functions are expressed as a sum We point out that, in spite of formal similarity, generating
over weighted paths, analogous to a path integral. We wilfunctions have very different physical meanings in the
briefly recall this expansion in the algebraic graphs theoryabove-mentioned problems. Indeed, in random-walk theory
language. they are introduced as a pure computational tool artths
The Green's functions are defined by no physical meaning. As for tight-binding, generating func-
tions have a direct physical interpretation: they are the re-
i i . summation of the perturbative expansion in the hopping pa-
Gii(“’):_'f expiwt)(0[Tci(t)¢j(0)[0)dt.  (5)  rameter andh is a function of the parameters appearing in
the Hamiltonian.
Let us start from the “atomic” unperturbed Hamiltonian ob-  Now, random walks are one of the most studied physical
tained by takingt=0 in Eqg. (4). Then the corresponding problems on graphs and analytical techniques are known al-
Green’s functions are lowing exact solutions for generating functions on very gen-
eral families of discrete structures. This is the case for a wide
class of graphs called bundled structures, which we will con-
sider in the next section.

1 -
Gij(w):w+—aszij()\) (10

S
AT _ U]
Gij (w)_w+azi' (6)
Expanding in the hopping term, the tight-binding Green’s

function can be expressed as lll. BUNDLED STRUCTURES

. Bundled structures are graphs obtained by joining to each
n point of a graph calledbasea copy of another graph called
Gii(“’):zf0 (_t)nGi(i (), (M fiber. A typical bundled structure is the comb lattice showed
in Fig. 1, where both base and fiber are linear chdins
where thenth-order coefficienG{’(w) is the sum over all shall call them backbone and teeth, respectivelyie main
n—steps walks, starting inand ending irj, of the products random-walks quantities for a generic bundled structure can
of the atomic Green’s functions on all sites visited in eachbe related to the corresponding ones for its base and its fiber
walk. Calling{W,(ij)} the ensemble of all these walks, we by analytical techniquéeSin the following we shall consider
have only base graphs with constant coordination number.
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p(w) group represents the sequence of steps on a fiber between
two steps on the base. Notice that some of these groups can
1.4¢ also be empty.

1ol Let us callCy(ng) the number ohg-steps closed walk on

the base. Thath order of the perturbative expansion in the

1 hopping parameter for the local Green’s function relative to
0.8l one of the base sites is

GiF(w0)= 2 Cone)(—0) - X Fo(w):-
ng= ng

n
ng+1

62 ng+1

1
\ L X F () 8y 00 S (12)

(a) Notice that the only constraint on thg is that their sum
must ben; therefore, after summing over; all the sums in
Eqg. (12) become independent. Each sum owemives, by
definition, the local Green’s function for the fiber with an
impurity at the origin,Foy(w). We then obtain

Goo<w>=n2 Co(ng) (—1)"8[ Foo( @)™ (13

0.75 Now the perturbative expressial®) when all sites of the
graph have the same coordination number is simply given by

0. 25 Goo<w>=§ Co(—D)"TGAT(w)]". (14)

23 — =) T > w Comparing the last two expressions we find the recipe for
(0) building the local Green'’s functions on the base of a bundled
structure. Indeed, they can be obtained by replacing in the

FIG. 2. Local tral density for th mb lattice, for different , . . .
G. 2. Local spectral density for the comb lattice, for different | <"~ o0 function the expression of the atomic Green
valuesa/t, greater and lower than 1, as discussed in the text: for,

a/t>1 (here we have chosexit=3/2) there is a gap in the spectral function with that of the fiber, where the changeafin i

density(a), while if a/t<1 (herea/t=1/2) the gap close&). _:0 has been _taken into ac_count._ In this way, atta_chin_g a
fiber on each site of a graph is equivalent to considering it as

composed of “dressed atoms,” described by the local
reen’s function of the fiber.
When the base is translation invariant and the fiber is a
neric graph, this “dressed atom picture” is more evident.
this case, considering the base’s sites only, we can de-
scribe the spatial dependence of the Green’s functions
through the Fourier transform. Since each site of the base is
‘dressed with the same graph fiber, the spatial dependence on
the base is the same as that of the undressed base graph.
Indicating withG(k, ) the Fourier transform o&;; (w) (i,]
belonging to the basewe get

We will give the solution of the tight-binding problem on
a bundled structure in terms of the solution for the base an
the fiber graphs. We cal;;(w) andf;; () the local Green’s e
functions of the base and the fiber, respectively, and we aneﬁ-1
lyze the variation of the local Green’s function of the base
when it is “dressed” by the fibers. Let us consider first the
variations of the Green'’s functions relative to the fibers con
nected to the base in their origis 0. In this case the coor-
dination number, increases by a quantity that is simply the
coordination number of the joining site on the base. It fol-
lows that the first effect of the joining is the introduction in

the fiber's Hamiltonian of an impurity with energy aAz 1
and the local Green’s function relative to the site 0 G(k,w)= , (15
becomes w—e(k)—{o—[F(w)] "}
wheree(k) is the Fourier transform of the hopping matrix on
1 the base. It is clear from expressi@lb) that the effect of the
Folw)= ——=——- (11)  fiber can be described as a “self-energy” in the Green'’s
aAz+fo(w) function on the base. A free model on a bundled structure is

equivalent, as far as the base sites Green’s functions are
Let us now consider the problem of computing the localtaken into account, to a model with an interaction generated
Green’s function for the base. Using the walks statistics for dy the fiber geometry.
n-step walk starting and ending at the same base point, we To describe the effects of the “fibering” in the bundled
can distinguish between thes steps on the base and the structures, we study only local properties. Indeed, all
ne=n—ng steps on the fibers. Theg steps can also be bundled structures in the thermodynamic limit reduce to their
divided in (ng+1) groups of stepsy,...n, .;. Each fiber graphs and the quantities relative to the “bulk” of a
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bundled structure coincide with those of the fiber griph. preted as due to the inner states of the composite base atoms.

Therefore we will analyze the behavior of the local spectralTherefore the different behaviors of the local density of

density on the base: states describe the energetic competition between these inner
states and the Bloch states on the base.

IV. CONCLUSIONS

1

p(w)=—sgnw)Im[Goow)]. (16) In this work we used an alternative technique for the cal-

culation of Green’s functions of noninteracting quantum par-

ticles on noncrystalline structures in the tight-binding ap-

This quantity is commonly used to describe the properties oproximation, by resumming the perturbative expansion in the
impurity models, and we expect that it contains most of thehopping parameter. We applied it to a class of branched net-
information relative to the effects of dressing the base’s site&orks known as bundled structures through exact combina-
with the fibers. torial calculations based on random walk statistics. The ana-
As an example we present in Fig. 2 the behavior of théytic_al results show tha_\t_the geome’grical effect of branches is
local spectral density on the comb lattice, for different valueSauivalent to the addition of a suitable self-energy on the

of the ratioa/t. Whena/t>1, the particle gains in energy if ase structure. This phenomenon suggests that in general the

it is delocalized on the backbone only, since the backbonH}gyvzgczsoihgomglggugteig?gfp; %lri;ﬁ\?ia?aimggsc tiCoOnUIi?] t;e
sites have the largest coordination number. The spectral den? | be abl btai vt
sity is composed of two branches, separated by a gap. T Empler .geo][nettrryll. Vée expec]:‘t tot_ e able o o talunlana ytlcf
i s ’ | ; ression for the Green’s functions on several classes o
first one, whose shape is similar to that of a one-dimension b

- . raphs by this combinatorial technique applied to the
1D chain, corresponds to states delocalized on the backbong, . 4om-walk generating functions. As a final observation,

the other branch, which is defined for higher valueswof he perturbative expansion in the hopping parameter can also
corresponds to a delocalization on the teeth. On the othgfe ysed for strongly interacting systems with a local interac-
hand, whera/t<1 the gain in energy if the motion is limited tjon, as the Hubbard mod®IThe full knowledge of this

on the backbone sites is not enough and the two branchefaph-theoretical technique in real space on branched graphs
join. Part of the “1D-like” band is shifted to the right of the represents a first step in the developement of approaches
other branch of the curve. In the “dressed-atom picture” webased on hopping expansions for the study of interacting
have described above, the motion on the teeth can be intemodels on inhomogeneous structures.
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