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Abstract. When averages over all starting points are considered, the type problem for the recurrence or
transience of a simple random walk on an inhomogeneous network in general differs from the usual “local”
type problem. This difference leads to a new classification of inhomogeneous discrete structures in terms
of recurrence and transience on the average, describing their large scale topology from a “statistical” point
of view. In this paper we analyze this classification and the properties connected to it, showing how the
average behavior affects the thermodynamic properties of statistical models on graphs.

PACS. 05.40.Fb Random walks and Levy flights – 02.90.+p Other topics in mathematical methods
in physics – 02.10.Eb Combinatorics

1 Introduction

In statistical mechanics and field theory Euclidean lat-
tices describe the geometrical structure of crystals and of
more abstract geometrical objects, such as discretized flat
space-time. However, most real systems have irregular ge-
ometry: this is the case for glasses, polymers, amorphous
materials, biological structures and fractals in condensed
matter, as well as discretized curved space-times in field
theory. The geometrical model for these inhomogeneous
systems is a general discrete network made of sites and
links, i.e. a graph. From this point of view traditional
lattices are a particular kind of graph. Statistical mod-
els defined on graphs (e.g. harmonic oscillations, random
walks, spin systems) are the natural way to describe the
physical properties of inhomogeneous real structures.

The study of the relation between geometry and
physics is one of the most complex and interesting prob-
lems of statistical mechanics and field theory on graphs.
The main link between these two aspects is provided by
random walks. The latter are usually introduced to de-
scribe the diffusion of a classical particle and they are
related to Markov chains, potential theory and algebraic
graph theory on one side [1], and to many problems
of equilibrium and non-equilibrium statistical mechanics,
disordered systems and field theory on the other [2].

In particular, the large time scale asymptotics of ran-
dom walks provides the most effective method to describe
the influence of large scale topology on the physical prop-
erties of discrete structures. The definition of the spec-
tral dimension for inhomogeneous networks, generalizing
the Euclidean dimension of lattices in field theory and

a e-mail: cassi@pr.infn.it

phase transitions, is indeed based on the long time behav-
ior of random walks [3–5]. More generally, this asymptotic
regime allows the classification of every graph either as lo-
cally recursive or transient, according to the probability of
ever returning to the starting site: the probability is 1 in
the former case and less than 1 in the latter, independently
of the site. This classification, first introduced by Polya for
regular lattices [6], is known as the type-problem.

Local transience and recurrence describe local proper-
ties of physical models on graphs. However, in the study
of statistical models on graphs we are in general interested
in average (extensive) thermodynamic quantities. Indeed,
while on lattices, due to translation invariance, local quan-
tities are the same on all sites and therefore they are equal
to their average, on inhomogeneous structures they de-
pend in general on the site and the average behavior can
not be reduced to the local one. In the last few years it
has become clear that bulk properties are affected by the
average values of random walks return probabilities over
all starting sites: this is the case for spontaneous break-
ing of continuous symmetries [7], critical exponents of the
spherical model [8], and harmonic vibrational spectra [9].
Therefore the classification of discrete structure in terms
of recurrence on the average and transience on the average
appears to be the most suitable. Unfortunately, while for
regular lattices the two classifications are equivalent, on
more general networks they can be different and one has
to study a type-problem on the average [10].

Recently this problem has acquired particular rele-
vance in the study of spin models on graphs. Indeed it
has been shown that spontaneous breaking of continuous
symmetries occurs at T > 0 if and only if the under-
lying network is transient on the average [11]. Moreover
this analysis has shown that relevant and new topological
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properties of infinite graphs are associated to the on the
average classification.

In this paper we deal with the type-problem on the av-
erage and with the topological and thermodynamic prop-
erties arising from it, proving some basic theorems and
discussing their relevance for present and future develop-
ment in statistical physics.

The paper is organized as follows. In the next section
we introduce the basic concepts and notations concerning
random walks on infinite graphs. In Section 3 we ana-
lyze local recurrence and transience properties of random
walks, defined by the asymptotic behavior of the return
probabilities’ generating function. In Section 4 we con-
sider thermodynamic averages on infinite graphs, and in
Section 5 we introduce the topological classification in
terms of average properties of random walks, based on
transience and recurrence on the average. In Section 6
we analyze the general relations between average gen-
erating functions of return probabilities and consider a
further classification holding for transient on the aver-
age graphs, which completes the topological description
of infinite graphs in terms of random walk behavior. In
Sections 7 and 8 we show the relevance of this topologi-
cal classification in the study of thermodynamic proper-
ties of statistical models on inhomogeneous structures. A
summary and a discussion of our results are presented in
Section 9.

2 Random walks on infinite graphs

Let us begin by recalling the basic definitions and results
concerning graph theory and random walks on infinite
graphs, which will be used in the following. A more de-
tailed and complete treatment can be found in the math-
ematical reviews by Woess [1,12].

A graph G is a countable set V of vertices (or sites)
(i) connected pairwise by a set E of unoriented links (or
bonds) (i, j) = (j, i). If the set V is finite, G is called
a finite graph and we will denote by N the number of
vertices of G. A subgraph S of G is a graph with a set of
vertices S ⊆ V and a set of links E′ ⊆ E.

A path in G is a sequence of consecutive links
{(i, k)(k, h) . . . (n,m)(m, j)} and a graph is said to be con-
nected, if for any two points i, j ∈ V there is always a path
joining them. In the following we will consider only con-
nected graphs.

The graph topology can be algebraically represented
introducing its adjacency matrix Aij given by:

Aij =

{
1 if (i, j) ∈ E
0 if (i, j) 6∈ E.

(1)

The Laplacian matrix ∆ij is defined by:

∆ij = ziδij −Aij (2)

where zi =
∑
j Aij , the number of nearest neighbors of i,

is called the coordination number of site i. Here we will
consider graphs with zmax = supi zi <∞.

In order to describe disordered structures we introduce
a generalization of the adjacency matrix given by the fer-
romagnetic coupling matrix Jij , with Jij 6= 0 ⇐⇒ Aij =
1 and sup(i,j) Jij <∞, inf(i,j) Jij > 0. One can then define
the generalized Laplacian:

Lij = Iiδij − Jij (3)

where Ii =
∑
j Jij .

Every connected graph G is endowed with an intrinsic
metric generated by the chemical distance ri,j which is
defined as the number of links in the shortest path con-
necting vertices i and j.

Let us now introduce the random walk on a graph G
by defining the jumping probability pij between nearest
neighbors sites i and j:

pij =
Aij
zi

= (Z−1A)ij (4)

where Zij = ziδij . From (4) the probability of reaching in
t steps site j starting from i is given by:

Pij(t) = (pt)ij . (5)

Recurrence properties of random walks are studied intro-
ducing the probability Fij(t) for a walker starting from i
of reaching for the first time in t steps the site j 6= i, while
Fii(t) is the probability of returning to the starting point
i for the first time after t steps and Fii(0) = 0. The basic
relationship between Pij(t) and Fij(t) is given by:

Pij(t) =
t∑

k=0

Fij(k)Pjj(t− k) (6)

(t > 0). From the previous definitions Fij ≡
∑∞
t=0 Fij(t)

turns out to be the probability of ever reaching the site j
starting from i (or of ever returning to i if j = i). Therefore
0 < Fij ≤ 1. The generating functions P̃ij(λ) and F̃ij(λ)
are given by:

P̃ij(λ) =
∞∑
t=0

λtPij(t) F̃ij(λ) =
∞∑
t=0

λtFij(t) (7)

where λ is a complex number. From definition (7) and from
the property 0 < Fij ≤ 1 by Abel theorem we have that
F̃ij(λ) is a uniformly continuous function for λ ∈ [0, 1] and
0 < F̃ij(λ) ≤ 1, while P̃ij(λ) is continuous for λ ∈ [0, 1[
but it can diverge for λ→ 1−.

Multiplying equations (6) by λt and then summing
over all possible t with the initial condition Pij(0) = δij
we get the basic relations between P̃ij(λ) and F̃ij(λ)

P̃ij(λ) = F̃ij(λ)P̃jj(λ) + δij . (8)

In the following we will call P̃i(λ) ≡ P̃ii(λ) and F̃i(λ) ≡
F̃ii(λ).

Before discussing recurrence and transience properties
we briefly recall the definition of the Gaussian model on
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a graph, whose deep relation with random walks will be
exploited in the next section.

The Gaussian model on the graph G can be defined [5]
introducing the field φi which are the functions of l∞(V ) =
{(φi)i∈V : supi |φi| <∞}. There exists a unique Gaussian
probability measure dµgφ on l∞(V ) with mean zero and
covariance (L+ µ)−1 [5] (µij is the diagonal matrix µij =
µδij , µ > 0); dµg(φ) characterize the Gaussian model and
we will write:

〈F (φ)〉 =
∫
F (φ)dµg(φ) (9)

and in particular:

〈φiφj〉 = (L+ µ)−1
ij . (10)

Alternately, the Gaussian model can be introduced us-
ing a standard approach of statistical mechanics via the
Hamiltonian:

H =
∑
i,j∈G

Lijφiφj +
∑
i∈G

µφ2
i (11)

together with the Boltzmann weight exp(−H), also lead-
ing to (10).

3 Local recurrence and local transience

The long time asymptotic behavior of random walks on
infinite graphs is determined by the large scale topology
of the graph and the quantities F̃i(1) and limλ→1 P̃i(λ) can
be used to characterize the geometry of the graph itself.
In particular a graph is called locally recurrent if

F̃i(1) = 1 or equivalently lim
λ→1

P̃i(λ) =∞ ∀i. (12)

On the other hand if:

F̃i(1) < 1 or equivalently lim
λ→1

P̃i(λ) <∞ ∀i (13)

the graph is called locally transient. By standard Markov
chain properties [1] (12, 13) are independent from the site
i and then they can be considered as properties of the
graphs.

Let us prove the independence from i of (12).
If limλ→1 P̃i(λ) = ∞ then by equation (8) we get
limλ→1 P̃ji(λ) = ∞ for all j (0 < F̃ji(1) ≤ 1); now
from (4, 5) we have that ziPij(t) = zjPji(t) and ziP̃ij(λ) =
zjP̃ji(λ). Then also limλ→1 P̃ij(λ) = ∞ and from (8) we
obtain limλ→1 P̃j(λ) =∞, ∀j ∈ V . In an analogous way it
can be shown that property (13) is independent from the
choice of i.

Local transience and local recurrence satisfy impor-
tant universality properties [1]. Indeed they are not
modified if we substitute the jumping probabilities of
the random walker (4) with the generalized jumping
probabilities:

pij =
Jij
Ii
· (14)

In [1] the invariance of the local recurrence under a wide
class of transformations of the graph itself is also proven.
Local recurrence and transience are not modified by the
addition of a finite number of links or the introduction
of second neighbor links on the graph. Notice that these
basic invariance properties prove that local recurrence and
transience are determined only by the large scale topology
of the graph.

4 Averages on infinite graphs

Let us now consider thermodynamic averages on infinite
graphs. The generalized Van Hove sphere So,r ⊂ G of cen-
ter o and radius r is the subgraph of G containing all i ∈ G
whose chemical distance from o ri,o is ≤ r and all the links
of G joining them. We will call No,r the number of vertices
contained in So,r.

The average in the thermodynamic limit φ̄ of a func-
tion φi defined on each site i of the infinite graph G is:

φ ≡ lim
r→∞

∑
i∈So,r

φi

No,r
· (15)

The measure |S| of a subset S of V is the average
value χ(S) of its characteristic function χi(S) defined by
χi(S) = 1 if i ∈ S and χi(S) = 0 if i 6∈ S. The measure of
a subset of links E′ ⊆ E is given by:

|E′| ≡ lim
r→∞

E′r
No,r

(16)

where E′r is the number of links of E′ contained in the
sphere So,r. The normalized trace TrB of a matrix Bij is:

TrB ≡ b (17)

where bi ≡ Bii. Let us require that:

lim
r→∞

|∂So,r|
No,r

= 0 (18)

where |∂So,r| is the number of the vertices of the sphere
So,r connected with the rest of the graph.

Under this hypothesis we now prove that the averages
of a bounded from below function φi are independent from
the center o of the spheres sequence, using the fact that
χi(S) is bounded and that measures of subsets are always
well defined. From the boundedness of the coordination
number we get for any couple of vertices o and o′:

No,r − (zmax)ro,o′ |∂So′,r| ≤ No′,r

≤ No,r + (zmax)ro,o′ |∂So,r| (19)

and

(zmax)−ro,o′ |∂So,r| ≤ |∂So′,r| ≤ (zmax)ro,o′ |∂So,r|. (20)
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Let us consider a bounded from below function φi. Given
two vertices o and o′, we have:∑
i∈So′,r−ro,o′

φi +
∑

i∈So,r∆So′,r−ro,o′

φi

No,r
=

∑
i∈So,r

φi

No,r

=

∑
i∈So′,r+ro,o′

φi −
∑

i∈So′,r+ro,o′
∆So,r

φi

No,r
(21)

where So,r ⊆ So′,r+ro,o′ , So′,r−ro,o′ ⊆ So,r and
So,r∆So′,r−ro,o′ is the symmetric difference between So,r

and So,r−ro,o′ . |So,r∆So′,r−ro,o′ | denotes the number of
vertices of So,r∆So′,r−ro,o′ and from (19) we get:

|So,r∆So′,r−ro,o′ | ≤ (zmax)ro,o′ |∂So,r|
|So,r∆So′,r−ro,o′ | ≤ (zmax)ro,o′ |∂So,r−ro.o′ | (22)

with an analogous equation holding for So′,r+ro,o′∆So,r.
Defining φ̄ = 0 if φi > 0 for all i and φ̄ = |mini φi|
otherwise, from (21) we have:∑
i∈So′,r−ro,o′

φi − φ̄|So,r∆So′,r−ro,o′ |

No,r
≤

∑
i∈So,r

φi

No,r

≤

∑
i∈So′,r+ro,o′

φi + φ̄|So′,r+ro,o′∆So,r|

No,r
(23)

with property (18) of G and inequalities (22) we get:

lim
r→∞

∑
i∈So′,r−ro,o′

φi

No,r
≤ lim
r→∞

∑
i∈So,r

φi

No,r
≤ lim
r→∞

∑
i∈So′,r+ro,o′

φi

No,r
(24)

since No,r = No′,r−ro,o′ + |So,r∆So′,r−ro,o′ | = No′,r+ro,o′ −
|So,r∆So′,r−ro,o′ | using again (18, 22) we get:

lim
r→∞

∑
i∈So′,r−ro,o′

φi

No′,r−ro,o′
≤ lim
r→∞

∑
i∈So,r

φi

No,r

≤ lim
r→∞

∑
i∈So′,r+ro,o′

φi

No′,r+ro,o′
· (25)

Therefore, if the limit with the spheres centered in o′ ex-
ists, it gives the same result using as a center any vertex o.

5 Recurrence and transience on the average

The study of thermodynamic properties of statistical mod-
els on infinite graphs requires the introduction of averages

Fig. 1. The NTD tree: the distances between the ramifications
increase exponentially. This graph is locally transient and re-
current on the average.

of local quantities. The latter are related to random walks
by the return probabilities on the average P̄ and F̄ , which
are defined by:

P̄ = lim
λ→1

P̃ (λ) (26)

F̄ = lim
λ→1

F̃ (λ). (27)

A graph G is called recurrent on the average (ROA) if
F̄ = 1, while it is transient on the average (TOA) when
F̄ < 1.

Recurrence and transience on the average are in gen-
eral independent of the corresponding local properties.
The first example of this phenomenon occurring on in-
homogeneous structures was found in a class of infinite
trees called NTD (Fig. 1) which are locally transient but
recurrent on the average [10].

Moreover, while for local probabilities (8) gives:

P̃i(λ) = F̃i(λ)P̃i(λ) + 1 (28)

an analogous relation for (26, 27) does not hold since av-
eraging (28) over all sites i would involve the average of a
product, which due to correlations is in general different
from the product of the averages. Therefore the double
implication F̃i(1) = 1 ⇔ limλ→1 P̃i(λ) = ∞ is not true.
Indeed there are graphs for which F̄ < 1 but P̄ = ∞ (an
example is shown in Fig. 2) and the study of the relation
between P̄ and F̄ is a non-trivial problem.

6 Pure and mixed transience on the average

In this section we study the relation between P̄ and F̄
and we show that a complete picture of the behavior of
random walks on graphs can be given by dividing transient
on the average graphs into two further classes, which will
be called pure and mixed transient on the average.
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Fig. 2. A mixed TOA graph: the cubic lattice is a pure TOA
graph while the hair is ROA.

First, considering a ROA graph, we prove that if F̄ = 1
then P̄ = ∞. In this case for each δ > 0 it exists ε such
that if 1 − ε ≤ λ < 1, we have: 1 − δ ≤ F̃ (λ) ≤ 1. Let
us consider the subset S ⊆ V of the sites i such that
F̃i(1 − ε) < 1 −

√
δ and we call S̄ its complement. We

obtain:

1− δ ≤ F̃ (1− ε) = χ(S)F̃ (1− ε) + χ(S̄)F̃ (1− ε)
≤ (1−

√
δ)|S|+ |S̄| = 1−

√
δ|S|. (29)

From (29) we get |S| ≤
√
δ and then |S̄| ≥ 1 −

√
δ. Ex-

ploiting the property that P̃ (λ) is an increasing function
of λ, for each λ ≥ 1− ε we get:

P̃ (λ) ≥ P̃ (1− ε) ≥ χ(S̄)(1− F̃ (1− ε))−1

≥ |S̄|δ−1/2 ≥ (1−
√
δ)δ−1/2. (30)

In this way we proved that for an arbitrary large value of
(1 −

√
δ)δ−1/2 (δ → 0), there exists ε such that for each

λ, 1 − ε ≤ λ < 1, we have P̃ (λ) ≥ (1 −
√
δ)δ−1/2, and

therefore P̄ = limλ→1 P̃ (λ) =∞.
Notice that this proof can be easily generalized to

graphs in which there is a positive measure subset S such
that: limλ→1 χ(S)F̃ (λ) = |S|. Indeed in an analogous way
it can be proven that:

P̄ ≥ lim
λ→1

χ(S′)P̃ (λ) =∞ ∀S′ ⊆ S, |S′| > 0. (31)

Fig. 3. A pure TOA graph, i.e. an inhomogeneous Bethe lat-
tice in which the distance between ramifications can be 1 or 2.

We will call mixed transient on the average a TOA graph
having a positive measure subset S such that:

lim
λ→1

χ(S)F̃ (λ) = |S|, (32)

while a graph will be called pure TOA, if:

lim
λ→1

χ(S)F̃ (λ) < |S| ∀S ⊆ V, |S| > 0. (33)

Examples of mixed and pure TOA graphs are shown re-
spectively in Figures 2 and 3. From the previous proof for
mixed TOA graphs we have P̄ =∞; let us now study the
behavior of P̄ on pure TOA graphs. We define k as

k = sup
S⊆V,|S|>0

lim
λ→1

χ(S)F̃ (λ)|S|−1 (34)

and since the graphs are pure TOA, k < 1. For each
0 < λ′ < 1 we introduce Sλ′ ⊆ V as the set of the vertices
i such that F̃i(λ′) > k. Exploiting the property that F̃i(λ)
is an increasing function of λ we have χ(Sλ′)F̃i(λ) > k|Sλ′ |
and then limλ→1 χ(Sλ′)F̃i(λ) > k|Sλ′ |. From (34) we ob-
tain that Sλ′ has zero measure, i.e. it must be |Sλ′ | = 0.
Exploiting the definition (7) we have, for all i ∈ V ,
P̃i(λ) ≤ (1− λ)−1 and we obtain for P̃ (λ′):

P̃ (λ′) = χ(S̄λ′)P̃ (λ′)+χ(Sλ′)P̃ (λ′) ≤ χ(S̄λ′)(1− F̃ (λ′))−1

+ |Sλ′ |(1− λ′)−1 ≤ |S̄λ′ |(1− k)−1 ≤ (1− k)−1. (35)
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Taking the limit λ′ → 1, we have that for pure TOA
graphs P̄ is finite.

This proof can be generalized to graphs in which there
is a positive measure subset S such that for all S′ ⊆ S,
|S′| > 0, limλ→1 χ(S′)F̃ (λ) ≤ |S′| obtaining

lim
λ→1

χ(S′)P̃ (λ) <∞. ∀S′ ⊆ S, |S′| > 0. (36)

7 Random walks and infrared properties
of the Gaussian model

The generating function P̃i(λ) is strictly connected with
the correlation functions of the Gaussian model (10) by
the following equation:

P̃i(λ) =
∞∑
t=0

λt(Z−1A)tii = (1− λZ−1A)−1
ii =

[Zλ−1(∆+ (1− λ)λ−1Z)−1]ii (37)

and taking the limit λ→ 1 we have:

lim
λ→1

P̃i(λ) = zi lim
µ→0

(∆+ µZ)−1
ii . (38)

In [5] the invariance of the limit: limµ→0(∆+ µ)−1
ii under

a local rescaling of the masses is proven. In particular we
have that if limµ→0(∆ + µ)−1

ii is finite then limµ→0(∆ +
µZ)−1

ii < ∞ while when the first limit diverges the latter
also diverges. Therefore on locally recurrent graphs we
have limµ→0(∆+ µ)−1

ii =∞ ∀i while for locally transient
graphs limµ→0(∆+ µ)−1

ii <∞ ∀i.
Let us now consider the average generating function.

From (37) we get:

lim
λ→1

P̃ (λ) = lim
µ→0

Tr[Z(∆+ µZ)−1] (39)

and since the connectivity of G is bounded we get:

lim
µ→0

Tr(∆+ µZ)−1 ≤ lim
λ→1

P̃ (λ)

≤ zmax lim
µ→0

Tr(∆+ µZ)−1. (40)

Exploiting the universality properties of the Gaussian
model [9], we have that limµ→0 Tr(∆ + µZ)−1 is finite if
and only if limµ→0 Tr(L+µ)−1 <∞, where L is a general-
ized Laplacian given by (3). Finally from inequalities (40)
we get that limµ→0 Tr(L+ µ)−1 = limµ→0 〈φiφi〉 diverges
if P̄ =∞ i.e. on ROA and mixed TOA graphs, while it is
finite on pure TOA graphs, where P̄ <∞.

8 Separability and statistical independence

In this section we prove and discuss an important prop-
erty characterizing mixed TOA graphs which allows the

simplification of the study of statistical models on these
very inhomogeneous structures. We will show that in this
case the graph G can be always decomposed in a pure
TOA subgraph S and a ROA subgraph S̄ with indepen-
dent jumping probabilities by cutting a zero measure set
of links ∂S ≡ {(i, j) ∈ E|i ∈ Sj ∈ S̄}. The separability
property implies that the two subgraphs are statistically
independent and that their thermodynamic properties can
be studied separately. Indeed, the partition functions re-
ferring to the two subgraphs factorize [11].

As a first step, from definition (32) the set of vertices
V of a mixed TOA graph G can always be decomposed in
two complementary subsets S and S̄ such that

χ(S′)F̃ (1)
|S′| < 1 (41)

for all S′ ⊆ S with |S′| > 0 and

χ(S′′)F̃ (1)
|S′′| = 1 (42)

for all S′′ ⊆ S̄ with |S′′| > 0.
To this decomposition we can associate the two sub-

graphs S and S̄ defined as follows: S has S as a set of
vertices and its links are all the links (i, j) ∈ G such that
i, j ∈ S; in the same way S̄ has S̄ as a set of vertices and
its links are all the links (i, j) ∈ G such that i, j ∈ S̄. Let
us now prove that the measure of the boundary |∂S| (16)
is zero.

We introduceBS , the border set of S, defined as the set
of the vertices i ∈ S with (i, j) ∈ ∂S for some j while we
will call BS̄ the border set of S̄. Proving that |∂S| = 0 is
equivalent to show that the measure of BS and BS̄ is zero.
Indeed we have |∂S|r ≤ |BS |r ≤ zmax|∂S|r and |∂S|r ≤
|BS̄ |r ≤ zmax|∂S|r , where |BS |r and |BS̄ |r are the number
of sites in BS and BS̄ contained in the sphere So,r.

Let us suppose that ∂S ≥ 0 and that |BS | ≥ 0, |BS̄ | ≥
0. From (31, 36) we have:

lim
λ→1

χ(BS)P̃ (λ) ≤∞ (43)

and

lim
λ→1

χ(BS̄)P̃ (λ) =∞. (44)

We will now derive a relation between χ(BS)P̃ (λ) and
χ(BS̄)P̃ (λ) which can not be satisfied if (43, 44) hold,
leading to a contradiction. This implies that |∂S| = 0.

Let us evaluate P̃i(λ) in a site i ∈ BS

P̃i(λ) =
∑
t

λtptii =
∑
t

λt
∑
jk

pikp
t−2
kj pji

≥
∑
t

λt
∑
j∈BS̄

pijp
t−2
jj pji (45)
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where in the inequality we do not consider the terms in
which j 6= k and j 6∈ BS̄ Exploiting the fact that pij ≥
1/zmax we get:

P̃i(λ) ≥ λ2

z2
max

∑
t

λt−2
∑

j∈BS̄,i

pt−2
jj =

λ2

z2
max

∑
j∈BS̄,i

P̃jj(λ)

(46)

where BS̄,i is the set of the nearest neighbors sites of i
which belong to BS̄ . If we take the average over the sites
i ∈ BS we have:

χ(BS)P̃ (λ) ≥ λ2

z2
max

lim
r→∞

χi(BS)
No,r

∑
i∈So,r

∑
j∈BS̄,i

P̃jj(λ)

≥ λ2

z2
max

lim
r→∞

χj(BS̄)
No,r

∑
j∈So,r

P̃jj(λ) =
λ2

z2
max

χ(BS̄)P̃ (λ).

(47)

If we take the limit λ→ 1 we have:

lim
λ→1

χ(BS)P̃ (λ) ≥ 1
z2

max

lim
λ→1

χ(BS̄)P̃ (λ). (48)

Expressions (43, 44, 48) can not be satisfied at the same
time and therefore one must have |∂S| = 0.

Finally we have to prove that S is a pure TOA graph
and S̄ is a ROA graph, i.e. we introduce the restricted
jumping probability on S and S̄ pSij and pS̄ij , given by
pSij = pij if i, j ∈ S, pSij = 0 otherwise and an analo-
gous definition for pS̄ij . Then we show that S and S̄ with
the new jumping probabilities pSij and pS̄ij are respectively
pure TOA and ROA.

More generally for a walker on S starting from i, we
call PSij(t) the probability of reaching site j in t steps and
FSij(t) the probability of reaching j for the first time in t
steps. We will prove that:

P̃S(λ) =
∞∑
t=0

λtPSi (t) = χ(S)P̃ (λ)|S|−1

F̃S(λ) =
∞∑
t=0

λtFSi (t) = χ(S)F̃ (λ)|S|−1 (49)

where the average of P̃S(λ) and of F̃S(λ) is taken consid-
ering S as the whole graph. Analogous equations hold also
for S̄. From (36, 41, 49) we easily obtain that P̄S < ∞
i.e. S is pure TOA, while if we call P S̄ij(t) and F S̄ij(t) the
probabilities for a random walk on S̄, we get F̄ S̄ = 1, i.e.
S̄ is ROA.

To prove equations (49) first we have to show that:

P̃S(λ) =
∞∑
t=0

λtPS(t) λ < 1. (50)

Equation (50) implies that the thermodynamic average
and the sum over the discretized times t commute when
λ < 1. To prove (50) notice that for all λ < 1 we have:

P̃S(λ) = lim
r→∞

∑
i∈So,r

N−1
o,r

(
t̄∑
t=0

λtPSi (t) +
∞∑
t=t̄

λt̄PSi (t)

)

=
t̄∑
t=0

λtPS(t) + lim
r→∞

∑
i∈So,r

N−1
o,r

∞∑
t=t̄

λtPSi (t). (51)

Now
∑
i∈So,r

N−1
o,r

∑∞
t=t̄ λ

t̄PSi (t) ≤ λt̄(1 − λ)−1 and let-
ting in (51) t̄ → ∞ we get (50). Obviously an analogous
equation holds also for FSi (t), Pi(t) and Fi(t). Then we
can prove (49) showing that:

PS(t) = χ(S)P (t)|S|−1

FS(t) = χ(S)F̃ (t)|S|−1. (52)

We define d(i, BS) the distance between i and the cutset
BS : d(i, BS) = infk∈BS ri,k and will call St the subset of
S such that: St = {i ∈ S|d(i, BS) ≤ t}, exploiting the
boundedness of the coordination number we get:

|St| < (zmax)t|BS | = 0 (53)

since |BS | = 0. Taking the average of PSi (t) we have:

PS(t) = χ(S̄t)PS(t) + χ(St)PS(t). (54)

Now χ(St)PS(t) ≤ |St| = 0, and then PS(t) =
χ(S̄t)PS(t). Finally exploiting the fact that on S̄t we have
PSi (t) = Pii(t), we obtain (52). Following analogous steps
we obtain the equality for FS(t) and for the averages
P S̄(t) and F S̄(t) defined on S̄.

9 Discussion and conclusions

In this paper we have presented a systematic mathemati-
cal analysis of the type problem for random walks on in-
finite graphs by considering return probabilities averaged
over all sites. After showing that recurrence and transience
on the average (ROA and TOA) do not in general coincide
with the corresponding local properties, we have proved
that TOA has to be split in two complementary subcases,
the pure and the mixed one. Then we have shown that a
mixed TOA graph can always be decomposed into a ROA
and a pure TOA subgraphs by cutting a zero measure
set of links. This property has deep physical implications,
since it allows the decomposition of a statistical model de-
fined on a mixed TOA graph into two thermodynamically
independent models defined respectively on the ROA and
pure TOA subgraphs.
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In conclusion, we have introduced an exhaustive clas-
sification of infinite networks in terms of their average re-
currence and transience properties, stating the type prob-
lem on the average. This classification is the relevant one
in the study of thermodynamic properties of statistical
models on inhomogeneous structures.
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