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LETTER TO THE EDITOR

The spherical model on graphs
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Abstract. We extend the lattice spherical model of Berlin and Kac to infinite graphs (describing
inhomogeneous structures such as fractals, polymers and amorphous materials). We analytically
calculate the exact values of the critical exponents, which turn out to depend only on the vibrational
spectral dimensionl of the graph. This functional dependence coincides with the analytic
continuation ind of the corresponding exponents for the lattice model. This result provides an
example of geometrical universality classes for non-translationally invariant systems and strongly
suggests considering as the natural generalization of the Euclidean dimensidar critical
phenomena.

The study of statistical models on lattices has brought out the fundamental role played by the
spatial dimensiod in phase transitions and critical phenomena. Indeed, it is well established
that the possibility of spontaneous symmetry breaking depends on the lattice geometry only
throughd and it is known that the critical exponents are determined ondiydoyd the symmetry

of the Hamiltonian. However, in spite of these fundamental and general results, only a few
models have been solved exactly in their critical regime and usually exact solutions are not
available ford > 2. Only the spherical model on lattices has been solved exactly in any
dimension, allowing one to know the dependence of its critical exponemt$ldnThis model

is even more interesting for two additional reasons: it has been shown to be the limit for
n — oo of classical Heisenberg (@) spin models [2] and its critical exponent has an analytic
continuation forreal values dffor2 < d < 4. The formerresultis the basis for the well known

1/n expansion for Heisenberg models, while the latter gives rise to very intriguing questions
about the physical meaning of non-integer dimensions. In fact non-integer dimensions are
needed when dealing with non-crystalline structures (such as amorphous materials, polymers
and fractals etc), where the lack of translational invariance prevents one from using such
useful concepts and techniques as reciprocal lattices and Fourier transform. However, although
several definitions of generalized dimensions have been proposed, itis not yet clear which is the
right one (if any) to describe critical phenomena. At present the best candidate for such a role
is the spectral dimensiah introduced by Alexander and Orbach [4] to describe the vibrational
spectrum of fractal structures and by Dhar [3] in connection with the infrared singularities of
the Gaussian model on a class of generalized networks. Infiéaus out to rule not only

the vibrational spectrum, but also the long time average behaviour of random walks, the free
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energy singularities of the Gaussian model [5] and the possibility of continuous symmetry
breaking [6]. Still, up to now the lack of exactly solved models showing phase transitions
on non-translationally invariant structures has prevented major progress in understanding the
relevance ofl.

Here we generalize the spherical model to graphs, i.e. to generic networks not necessarily
translation invariant, we show that it has a phase transitidh-at0 if 4 > 2 and we calculate
its thermodynamical critical exponents exactly for ahyThese exponents are expressed as
simple functions ofZ only. Moreover, for 2< d < 4 they do coincide with the analytic
continuation of the corresponding ones on lattices and for4 they are the usual mean-field
exponents found fad > 4. All these results strongly confirm the fundamental role played by
d in critical phenomena. In this paper we first introduce the basic ideas concerning graphs and
the spectral dimension and its relation with the Gaussian model and we recall the spherical
model on lattices together with its solution. Then we introduce the generalized spherical model
on graphs and we exactly solve its critical regime by mapping it into the critical regime of a
suitable Gaussian model. Finally, we give the critical exponents as functiaharaf discuss
the results.

A graphG is a set ofN points (V — oo in the thermodynamic limit) with a topology
described by its adjacency matuiy;, whose elements are equal to 1 if the poingsd j are
nearest neighbours and equal to 0 in all other cases. The usual physical way of defining the
spectral dimensiod consists in considering as an oscillating network with massest each
point, connected along the links by springs with elastic congtafithe spectral dimension
d is then defined by the asymptotic behaviour of the density of modes with frequeriy
Po(®) ~ o* for o — 0, thend = k + 1. From a rigorous mathematical point of view,

d can be defined by considering the spectrum of the Laplacian operat6r, defined by
Lij = zidjj — Aij, 2 = Zj A;; being the coordination number of sitelt can be shown that
the leading asymptotic behaviour of the spectral densi#y of L for/ — 0* cannot be slower
or faster than a power law if the following conditions are fulfilled: (1)< zmax < oo for
everyi; (2) calling N; (r) the number of poinG at a chemical distancgr fromi, it is possible
to find two positive constants andb such thatV; (r) < ar’ for everyi. These conditions
are fulfilled by graphs usually introduced to describe real physical systems, such as fractals,
bundled graphs and quasicrystals. Indeed, for all these graphs, when it has been possible to
calculate it exactlyp, (/) turns out to behave exactly as a power law. In this casan be
defined byp; (1) ~ 19>~ for1 — 0.
The Gaussian model d@ is defined by the Hamiltonian:

H= %Z"”"”LU +m28;)p; — h Z«pf 1)
ij i

whereg; is a real field,J > 0 is a ferromagnetic coupling, an external magnetic field and
m? = a;m?, with 1/K < o; < K for some positivek [7]. Its specific free energy; is given
by

1 1
2 = i _— = — i _—
fo(J,mi, h) = 1J|_rpoo N F ]vll_rpm N log Z (2)

whereZ is the partition function calculated according to the Boltzmann weight-ekp. The
spectral dimension is related to the singular parf@for 4 = 0 andm? — 0 by:

Sing(f) ~ (m?)%/2. ©)

The spherical model introduced by Berlin and Kac [1] is defined oW esite lattice by the
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ferromagnetic Hamiltonian for the real fiedd

H=-J Z¢I Ij¢j hz¢l (4)

i,j=1

with the spherical constraind _, qbz N, whereh represents an external field. The partition
function is

Z= /_Z]j do; e—f‘H(s(N—Zcp,?). 5)

Using the integral representation of thidunction

1 a+ioo
8(x) = / do & (6)
277 a—ioo
the partition function becomes
e o —Sn(¢i,0)
2m ]‘[ do; / - do " @)
where
Sy(¢i,0) = Z ¢i(08i; — BAij)$; — Bh qu ®)

i,j=1

Under the condition of positivity of the matrix/ — A, (i.e. Re(o) = « > Bz) the
integration order can be inverted and the partition function can be expressed as a superposition
of Gaussian integrals. In this form the calculation can be easily done performing a linear
unitary transformation which diagonalizes the matrix. Due to the translational invariance of
the lattice this transformation is the Fourier transform of the figld

In order to investigate the existence of phase transitions the model is studied in the
thermodynamic limit y — oo) with zero external field. It turns out that the partition function
is analytic at any temperature on lattices witkC 2, whereas it presents a singular behaviour
below a certain critical temperatuf@ on lattices withd > 3. This implies the presence
of a phase transition. The only relevant parameter in the critical behaviour is therefore the
dimension of the lattice. The critical exponents are calculated exactly for any integer value
of the dimension/ and they can be formally determined for real values of the pararieter
through analytic continuation.

The spherical model can be defined on a generic graph through the Hamiltonian (4) with
the generalized spherical constrai}t, z;¢? = N. We assume the coordination numbers to
be bound: 1< z; < zmax- On aregular lattice this constraint is exactly equivalent to the usual
one. On the other hand, on a generic graph this is the only generalization which preserves the
definiteness of the model itself at affly Using the integral representation (6) the partition
function can be written in the form (7) with

Sy(¢i,0) = Z ¢i(0z — BAiG; —h Z 2 ©)
i,j=1
where the external field has been rescaled by a fattor
If the matrix(c Z — BA), whereZ = diag(z;), has positive eigenvalues, i.edf> g, the
partition function of the spherical model is
1 o+ioo

S do €Y7 25(B, 0, h) (10)
2mi o—ioo
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whereZ; is the partition function of the Gaussian model with squared masses (o — 8)z;,
m? =0 — B, a; = z;, and couplings/ = B:

+o00 N

ZgB,0)= [ ] dpie . (11)

% =1

The Gaussian free energy per particle is easily evaluated:

1
gB.o.h) = fo(B, (0 — B)zih) = N InZg(B, 0, h)

1 R -1
= — oy TTNEZ —pA) +— 3 (02— pa). (12)

i,j=1
In the thermodynamic limitv=.— oo the saddle point method can be used yieldifigx
exp{N[s + g(B, s, h)]} wheres = s(8, h) is the solution of the saddle point equation

+1=0. (13)

=S

d
o8B0

This equation contains the whole physical information on the system since it implicitly
expresses the parameters a function of temperature and magnetic field. In general, it

is impossible to explicitly solve the saddle point equation because of the lack of translational
invariance. Indeed, this implies that the mat@Z — 8 A) cannot be diagonalized by a Fourier
transform. The diagonalizing transformation strongly depends on the geometrical properties
of the graph and is in general unknown. Differentiating expression (12) and observiri that
and A commute under trace, the saddle point equation yields, after some algebra,

19 h?d &
1\!@00 N ; Cii(s)z; — 2N o iJZ:lCij(U)
whereC;; are the correlation functions of the Gaussian modehfer O
Cijlo) =[(0Z = Ay (15)

Recalling the relevant property of the correlation functionsy5] C,-jmf = 1 and the choice
of bounded coordination numbers we have
2

{(s)(s — B2

whereC(s) = limy_oo N7t vazl Cii(s)z; = dfg/dm?andz (s) is asmooth function bounded
between 1 andmax for any value ofs. The existence of phase transition for the spherical
model now depends on the existence of real solutions for equation (16). The general solution
is obtained studying the asymptotic behaviour of the average correlation fuddtiomear

its infrared singularityn? — 0, i.e.s — f:

=1 (14)

g=s

%@(s) + 1 (16)

singC(s) ~ (s — B)2 L. 17)

We find that the partition function of the spherical model on a graph is an analytic function of
the temperature everywhere if an external magnetic field is present. If thé fielklvitched
off, the behaviour of the model depends deeply on the large scale geometry of the graph. This
means that if the graph teansient i.e. if d > 2, there exists a critical poirfi.. The partition
function has a cut in thér', k) plane along the temperature axis from zer@toOn the other
hand, if the graph isecursive i.e. if d < 2, the model does not present phase transitions.

The critical exponents for the spherical model on a graph of spectral dimehsambe
calculated exactly through asymptotic expansions near the critical @oiet ¢, , » = 0).
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SettingT = T, we find the average magnetization per sité:) for h — 0. Differentiating
with respect ta: the specific free energg(s) = s + g(s) we find

m(h) g (18)

wheree = (1 — 8/s) — 0 near the critical point. The asymptotic dependence of # is
found solving the saddle point equation (16) for snaadind introducing the infrared singular
behaviour of theC (s). Substituting the result in (18) we are able to find the critical exponent
s defined bym(h) ~ h¥® for T = T, andh ~ 0. We finds = (d +2)/(d —2)if2 <d < 4
ands = 3if d > 4. Ford = 4m(h) behaves agiIn(1/h)]*/3.

To study the critical behaviour in the disordered phase+ 7.") we directly set: = 0.
This is possible because in this regisiiz, 8) is analytic and the limit¢ — 0 andT — T
can be interchanged. Both the critical exponenenda, can be calculated through analytic
expansions fo&e — 0*. For the susceptibility we have % Using equation (16) we express
€ as a function of the reduced temperature (T — T.)/T.. Applying the definition ofy :

x ~t7vfort - 0", wefindy =2/(d—2) for2 < d < 4, whiley = 1 whend > 4.
Ford = 4 the critical behaviour of the magnetic susceptibility is giveryby r~1Ins=1. In
order to evaluate the critical behaviour of the specific lreaé use the following asymptotic
relation [8] between susceptibility and specific heat which remains validTintil T,

1 1 _,dx

2Kt X Tar

(19)

The critical exponent:, defined bycsing ~ ¢~ for t — 0", isa = (d — 4/ — 2) if
2 < d < 4. Notice thatx < 0 impliescsing= 0 atT, and therefore = (3)Kp. Ford > 4 we
find « = 0. This means that has two different finite limits for — 0*. Ford = 4 we find
¢~ c1+coIn(r)~Y~1, wherec; andce, depend on the detailed structure of the graph.

In the phase of broken symmetry the saddle point equation has no solutibn=£o0.
Therefore, we have to study the two limits— 0*. ForT < T, we havee — 0*. Solving
(16) with respect te and substituting in equation (18), we find T) o< «/—tsgn(k), which
givesg = % This result is independent d@fand holds for any graph. We emphasize that the
expression ofn(T) is exact at anyi’ < T,.. Taking the second derivative of the free energy
with respect ta: we find x (k, €(h)). To obtainy = x (h — 0) we find, from the saddle point
equationg as a function ofi. If 2 < d < 4, x diverges forh — 0 andy’ cannot be defined.

If d > 4 theh — O limit of x (k) exists and the critical exponent defined byy ~ (—1)~"',
t - 07, is equal toy, i.e.y’ = 1. In a similar way we can show that the specific heat in the
ordered phase is= (%)KB. This result is exact at arly < 7. and for any transient graph.

In a similar way the spherical model can also be solved on recursive graphs, i.e. graphs
with d < 2. In this case the saddle point equation has a real solstiar?’) for anys andT
except forT = 0, » = 0. However the thermodynamic functions show a critical behaviour
for T, h — 0 since in this limits — g, i.e. the infrared singularity of (s) comes into play.
Actually, we find that the response functions diverge as power lawsifdl < 2 while they
behave exponentially ifi if 4 = 2. Therefore, it/ < 2 we have a critical behaviour described
by true critical exponents. Far— 0* we find that whenl < 2 the magnetic susceptibility at
low temperature ig ~ T%@-? yielding a critical exponent = —2/(d — 2). If d = 2 we
haveyx ~ exp(—t/T) wherer is a graph dependent parameter. Since we are in an analyticity
region, the relation (19) applies, yieldiag= (3) K s + csing, Wherecsing ~ T4/ @2 if d < 2,

i.e. @ =d/(d—2), andcsing ~ T 2exp(—7/T) if d = 2. If we setT = 0 we find thatm
is finite forh — 0 for anyd < 2 formally yieldings = oco. The values of all the critical
exponents of the spherical model on a graph are summarized in table 1.
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Table 1. Critical exponents of the spherical model on a graph of spectral dimedsion

1<d<2 2<d<4 d>4
T=T. & 0 5=42 §=3
T<T, — y’ does notexist y’ =1
T>T. yv=7%5 v=35 y=1
T<T. — c=3Kp c=13Kp
T>T, 0‘:%;2 a=d4 a=0

|
N

T<T, —

=
Il
NI
=
Il
NI

As we previously mentioned, all critical exponents depend onlyl ofThis is a strong
evidence of universality. Indeed, the spectral dimension itself has deep universal properties
being related only to large scale geometry, regardless of local topological details. It can
be shown [9] that is left unchanged under the addiction of ferromagnetic couplings up
to kth neighbours, with finit&. Moreover, the critical exponents are still the same for a
generic distribution of bounded ferromagnetic couplidgs= g;; A;;, with 1/K < g;; < K,
together with the generalized spherical constr@thj,-qbi2 = N, whereJ; = Z,. Jij. All
these properties clearly also hold for regular lattices, since they are particular cases of graphs,
proving the invariance of the usual critical regime under the introduction of ferromagnetic
disorder and finite range geometrical disorder.
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