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In this paper we present the inversion of the Mermin-Wagner theorem on graphs, by proving the existence
of spontaneous magnetization at finite temperature for classical spin models on transient on the average graphs,
i.e., graphs where a random walker returns to its starting point with an average probability F̄�1. This result,
which is here proven for models with O(n) symmetry, includes as a particular case n�1, providing a very
general condition for spontaneous symmetry breaking on inhomogeneous structures even for the Ising model.
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Geometry plays a fundamental role in phase transitions of
statistical models on regular lattices. The existence itself of
an ordered phase at non zero temperature only depends on
large scale topology, via the Euclidean dimension d of the
lattice. Indeed, a discrete symmetry is broken if and only if
d�1, while for a continuous symmetry the corresponding
condition is d�2. For the latter case two rigorous results, the
Mermin-Wagner theorem �1,2� and the Frölich-Simon-
Spencer bound �3,4�, provide, respectively, the necessary and
the sufficient condition for spontaneous symmetry breaking.

This simple and exhaustive picture allows us to classify a
statistical system on a lattice in terms of geometrical super-
universality classes characterized by the Euclidean dimen-
sion. Unfortunately the classification cannot be directly ex-
tended to general networks describing noncrystalline struc-
tures, where one cannot exploit the basic geometrical
features of crystal lattices, such as translation invariance, the
concept of Euclidean dimension, the reciprocal lattice. The
proofs given in Refs. �1–4� strongly rely on these properties
and more general concepts and tools are needed when deal-
ing with a noncrystalline structure.

A basic improvement in the study of properties of geo-
metrically disordered structures has been achieved with
graph theory. A graph, i.e., a general network of sites con-
nected pairwise by bonds, provides the most suitable math-
ematical tool to describe complex and irregular discrete ge-
ometries. Euclidean lattices, which are the usual model for
crystalline structures, are very peculiar example of graphs
characterized by complete translation invariance.

The generalization to inhomogeneous structures of the
necessary condition for spontaneous breaking of continuous
symmetry, the Mermin-Wagner theorem, has been the first
step in this direction �5,6�. The existence of spontaneous
magnetization on a graph G is related to the probability Fi of
returning to the starting site i for a simple random walk on G.
In particular, it was proven that there is no spontaneous mag-
netization for recurrent on the average �ROA� graphs, i.e.,

when F̄�1, where F̄ is the average of Fi over all the points
i of the graph G �5�. This result naturally includes the lattice
theorem �1�, since Euclidean lattices in one and two dimen-
sions turn out to be ROA. However, up to now a sufficient
condition has been lacking.

In this paper we study the case F̄�1, i.e., transient on the
average �TOA� graphs and we give a rigorous proof of the
existence of spontaneous magnetization at T�0 for classical
spin models with O(n) symmetry. This result is the exact
inversion of theorem �5� for the classical case and a gener-
alization to graphs of Refs. �3,4�, since lattices with d�2 are
TOA. Now, each graph can be classified either as ROA or
TOA and therefore this theorem completes the picture for
classical spin models on graphs. Moreover, as in the lattice
case �3,4�, the proof also holds for n�1, i.e., for the Ising
model.

In the following G is a graph consisting of Ng sites, i
�1,2, . . . , Ng , and of links (i j) joining them; we say that
two sites connected by a bond are nearest neighbors. A graph
is connected if, given any two points in G, there exists a path
joining them. Here we will consider connected graphs. The
chemical distance between sites i and j is the length �number
of links� of the shortest path joining them. The graph topol-
ogy is algebraically described by its adjacency matrix Ai j ,
given by Ai j�1 if i and j are nearest neighbors, Ai j�0 oth-
erwise. O(n) models on G with n�1 are defined by the
Hamiltonian

H��
1

2 �
i j

J i j�� i•�� j�h� •�
i

�� i , �1�

where Ji j are bounded ferromagnetic interactions on G:

Ji j�J ji�� Ji j with 0��	Ji j	J�
 if Ai j�1,

0 if Ai j�0,
�2�

and zi�� jJ i j	z�
 . �� j are n-dimensional real unit vectors
�� i�(�1, . . . ,�n) defined on each vertex satisfying the con-
straints: ��� i�2�1�i . For n�1 H describes the Ising model
which is invariant under the discrete symmetry group Z2,
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while for n�2 H represents a model with an O(n) continu-

ous symmetry. Finally h� �(h ,0, . . . ,0), h�0, is an external
magnetic field coupled to �� i .

The average magnetization is the order parameter of the
model and it is defined by

M �h ��
1

Ng
�

i
�� i

1
 , �3�

where the average �•••
 is taken with respect to the usual
Boltzmann weight exp(��H) with ��1/KT .

The Mermin-Wagner theorem will be inverted by proving
a lower positive bound for the magnetization at sufficiently
low T in the thermodynamic limit Ng˜
 , on an infinite
graph G. Namely, we will show that if F̄�1, there exists a
small enough temperature T for which lim

h˜0
M (h)�c(T)

with c(T)�0. In order to define the thermodynamic limit let
us introduce the Van Hove spheres Sr ,o as the subsets of sites
in G whose chemical distance from o is 	r , N is the number
of sites in Sr ,o . In our proof to explore the behavior of the
model on the infinite graph, first we will obtain inequalities
for thermal averages on the finite subgraphs Sr ,o given by the
sites of the sphere Sr ,o and the bounds (i , j) of G with i , j ,
�Sr ,o . Then we will take the thermodynamic limit Ng˜
 ,
letting r˜
; finally we will take the limit h˜0.

Let us first consider graphs for which the average of Fi is
smaller than 1 in every positive measure subset S of the sites
of G, where the measure of the subset S is given by �S�
�lim

Ng˜

�� i�S(i)�/Ng and �S(i) is the characteristic func-

tion of S: �S(i)�1 if i�S and �S(i)�0 if i�S . We will
call these graphs pure TOA. For these graphs in the thermo-
dynamic limit Ng˜
 �7�:

lim
�˜0

lim
Ng˜


1

Ng
Tr�L����1�v�
 , �4�

where Li j is the Laplacian operator given by Li j�zi� i j
�Ji j and � i j��� i j , ��0.

Our proof will follow the following main steps. �a� We
introduce for the constraints ��� i�2�1 an integral representa-
tion with Lagrange multipliers � i and perform the Gaussian
integration on �� i , �b� we determine the asymptotic behavior
of the integrals over � i for �˜
 by saddle point technique,
�c� we establish the lower bound on M (h) exploiting �b� and
the identity

1�
1

Ng
�

i
���� i�2
. �5�

Let us start with step �a�. In the expressions �3� and �5� we
introduce the integral representation for the constraints ��� � i

2

�1:

�� ��� i�2�1 ��
e�/2

2� � d� ie
[�i� i(��� i�

2�1)/2����� i�
2/2], �6�

where � is a real arbitrary constant. We will choose ��h� .
We now perform the Gaussian integration over the variables
�� i , obtaining for Eqs. �3� and �5�:

M �h ��
1

Z� �
i�Sr ,o

d� ie
iS�h(�)

h

Ng
�
k j

�L�H�i��k j
�1,

�7�

1�
1

Z� �
i�Sr ,o

d� ie
iS�h(�)� n

�Ng
Tr�L�H�i���1

�
h2

Ng
�
i j

�L�H�i�� i j
�2� , �8�

where

iS�h�����
n

2
Tr� ln�L�H�i����

�

2 � i�
i

� i�h2�
i j

�L

�H�i�� i j
�1� ,

Z�� �
i�Sr ,o

d� ie
iS�h(�),� i j�� i� i j , and Hi j�h� i j .

Notice that the order of the symmetry group n becomes a
parameter of the integration.

Let us now study the behavior of Eqs. �7� and �8� for large
� , which is point �b� of our plan. By saddle point theorem,
the leading asymptotic behavior of Eqs. �7� and �8� is given
by the � ī, which satisfy the stationary conditions

�

��̄ i
� i�

k
�̄k�h2�

k j
�L�H�i�̄ �k j

�1��0�i , �9�

where �̄ i j��̄ i� i j . Equation �9� is satisfied for all h�0 only
if �̄ i�0�i , so that �7�

M �h ��
1

Z��
�

i�Sr ,o

d� iRe�eiS�h(�)�
h

Ng

�Re��
k j

�L�H�i��k j
�1��o�1/��, �10�

1�
1

Z��
�

i�Sr ,o

d� iRe�eiS�h(�)�Re� n

�Ng
Tr�L�H�i���1

�
h2

Ng
�
i j

�L�H�i�� i j
�2��o�1/��, �11�

where � is the region around the saddle point � ī in which
Re�exp�iS�h(�)���0. Here we exploited the property that
exp�iS�h(�ī)� is real and positive and that we are evaluating
real quantities.

As for �c�, we first introduce the following inequalities,
which can be proven exploiting the boundedness and the
non-negativity of the Laplacian operator �7�:
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1�Re� h

Ng
�
i j

�L�H�i�� i j
�1�

�Re� h2

Ng
�
i j

�L�H�i�� i j
�2� , �12�

0	
1

Ng
Re�Tr�L�H�i���1�	

1

Ng
Tr�L�H ��1. �13�

Using Eq. �12� we compare the expressions �10� and �11�,
obtaining for the magnetization

M �h ��1�o�1/���
1

Z��
�

i�Sr ,o

d� iRe�eiS�h(�)�
n

�Ng

�Re�Tr�L�H�i���1� . �14�

Now with Eq. �13� we obtain for M (h) the following in-
equality:

M �h ��1�o�1/���
1

Ng
Tr�L�H ��1. �15�

Using property �4� of pure TOA graphs, we finally get in the
thermodynamic limit

lim
h˜0

lim
Ng˜


M �h ��1�
v
�

�o�1/�� �16�

and this complete the proof for pure TOA graphs.
Let us consider now the most general case of a graph G

which is not pure TOA. In this case G must have a positive
measure subset where the average of Fi is 1, i.e., a ROA
subgraph. We call such a graph mixed TOA. A mixed TOA
graph can always be decomposed in a pure subgraph S and a
ROA subgraph, connected by a zero measure set of links.
This implies that the total free energy per site f G is given by
f G��S� f S��G�S� f G�S and as a consequence

lim
Ng˜


M �h �� lim
Ng˜


1

Ng
�
i�S

�� i
1
. �17�

On S,

lim
h˜0

1

Ng
�
i�S

�L�H � ii
�1�v��
 �18�

and using Eqs. �16�, �17�, and �18� we get

lim
h˜0

lim
Ng˜


M �h ���S��
v�

�
�o�1/��. �19�

Inequality �19� proves the existence of a lower positive
bound at low enough temperature for the magnetization of an
O(n) model defined on a TOA graph. In this way we obtain
the inversion of Ref. �5� and we generalize the Frölich-
Simon-Spencer result to generic inhomogeneous discrete
structures.

A few comments follow from our result. The condition
F̄�1 turns out to be a condition on the spectral density at
low eigenvalues of the Laplacian operator L on G and pro-
vides the link between the physical properties of the O(n)
model and the topology of the discrete space. In particular it
includes the lattice geometrical superuniversality class
d�2, i.e., the result of Refs. �3,4�. More generally for ROA
and pure TOA graphs, if one can define the spectral dimen-
sion d̄ �8�, the condition becomes d̄�2. However, we point
out that the present result is far more general, holding also
for graphs without spectral dimension. This is the case of the
Bethe lattice, which is a pure TOA graph with finite tempera-
ture phase transitions.

Our result completes the description of the behavior of
continuous classical spin models on generic networks. On
the other hand, it also provides a rigorous and very general
sufficient condition for spontaneous magnetization of the
Ising model (n�1) on graphs. Obviously this condition is
not necessary. A simple counterexample is the two-
dimensional Ising model, which has spontaneous magnetiza-
tion. The study of the Ising model on ROA graphs is there-
fore a key step to obtain a complete picture of the behavior
of spin models on general discrete structures.
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