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Abstract

Recently, we pointed out that on a class on non exactly decimable fractals two di�erent pa-
rameters are required to describe di�usive and vibrational dynamics. This phenomenon we call
dynamical dimension splitting is related to the lack of exact decimation invariance for these
structures, which turn out to be invariant under a more complex cutting-decimation transform.
In this paper we study in detail the dynamical dimension splitting on these fractals analyzing the
mathematical properties of the cutting-decimation transform. Our results clarify how the splitting
arises from the cutting transform and show that the dynamical dimension degeneracy is a very
peculiar consequence of exact decimability. c© 1999 Published by Elsevier Science B.V. All
rights reserved.

PACS: 63.50.+x; 05.40.+j; 64.60.Ak
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1. Introduction

Fractal dynamics is a �eld of primary importance in the study of physical phenom-
ena in real non-crystalline systems. The analytical study of dynamical properties of
fractals requires the introduction of simpli�ed model structures, which are supposed
to have properties similar to the real ones. However, as a matter of fact, analytical
results are usually restricted to exactly decimable fractals, where one can apply the
powerful techniques of exact renormalization group. Exactly decimable fractals, which
for example include deterministic �nitely rami�ed fractals, are indeed very peculiar
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structures, characterized by strong restrictions on their topology, which are far from
being general and representative of all fractals. Nevertheless, due to the availability of
analytical results, their behavior was usually considered as typical. This is the case for
the spectral dimension of a fractal. Such a parameter, the spectral dimension d̃, was
de�ned by the asymptotic law [1]:

�(!) ∼ !d̃−1 ; (1)

where �(!) is the density of harmonic vibrational modes with frequency !, or by

Pii(t) ∼ t−
d̃
2 ; (2)

where Pii(t) is the probability of returning to the starting site i after t steps (t → ∞)
for a random walker and the exponent d̃=2 is independent of the starting point [2]. In
the original de�nition, Eqs. (1) and (2) were supposed to be equivalent by scaling argu-
ments and in all calculations made on exactly decimable fractals they have been found
to be always equal. However, it has been shown [3] that from a mathematical point of
view it is not possible to conclude that the two asymptotic behaviors of Eqs. (1) and
(2) are equivalent. Therefore, one should distinguish between the di�usive spectral di-
mension de�ned by Eq. (2) and the vibrational spectral dimension de�ned by Eq. (1),
the former being relevant for local quantities and the latter for bulk or average quanti-
ties. In the following we will show that the coincidence of the two spectral dimensions
is typical of exactly decimable fractals while more general structures present dynamical
dimension splitting [4]. Indeed for exactly decimable fractals �(!) and Pii(t) have the
same transformation properties under renormalization and this leads to the so called
spectral dimension degeneracy. Here we will consider the case of a class of non exactly
decimable fractals (called in literature Nice Trees of dimension D;NTD, [5]) showing
that Eqs. (1) and (2) can be calculated applying a generalized renormalization trans-
formation, di�erent from the usual decimation and leaving the structure invariant. This
transformation consists of the product of a cutting transformation and a decimation.
The key point is that here �(!) and Pii(t) transform according to di�erent laws under
this new renormalization procedure. This leads to independent asymptotic behavior for
these quantities and requires the de�nition of two distinct spectral dimensions we will
call d̃D and d̃V , D staying for di�usive and V for vibrational.

2. Harmonic oscillations and random walks on generic networks

The harmonic oscillations of a generic network of masses m connected by springs
of elastic constant K are described by the equations of motion for the displacements
xi of each mass from its equilibrium position:

m
d2

dt2
xi =−K

∑
j∼i
(xi − xj) ; (3)

where the sum runs over the nearest neighbors of point i.
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Eq. (3) can be Fourier transformed with respect to the time giving

− !2

!20
x̃i =

∑
j∼i
(x̃j − x̃i) ; (4)

where !20 ≡ K=m.
The equations describing random walks and harmonic oscillations on a network are

formally similar. Let us consider a discrete time random walk (the so-called blind ant
problem) on a network; the master equation for the probability of being at site i after
t steps for a random walker starting from an origin site O at time 0, is

POi(t + 1)− POi(t) = 1=zmax
∑
j∼i
(POj(t)− POi(t)) ;

POi(0) = �iO ; (5)

where zmax is the maximum coordination number of the network (i.e. the maximum
number of nearest neighbors of a point), that is assumed to be �nite. Applying the
discrete Laplace transform with respect to the time de�ned by

P̃ij(�) =
∞∑
t=0

(1 + �)−tPij(t) (6)

and taking �→ 0, the system (5) can be written in a form similar to Eq. (4):

zmax� P̃Oi(�) =
∑
j∼i
(P̃Oj(�)− P̃Oi(�)) + �Oi : (7)

After the substitutions −zmax�→!2=!20 = 
 and P̃Oi(�) → x̃i, Eqs. (4) and (7) look
very similar. However they present a fundamental di�erence consisting in the term �Oi,
arising from the initial condition in Eq. (5). In addition, the system (4) is homogeneous
and de�nes an eigenvalue problem which has in�nite solutions (all the normal modes
of the graph). The density of eigenvalues for !→ 0 depends on d̃V and it is not a
direct solution of the system, but has to be separately calculated after solving the
whole system. On the other hand, the system (7) is inhomogeneous and corresponds
to a Cauchy problem, which has only one solution. The behavior of such a solution
for �→ 0 depends on d̃D and, in principle, has no direct relation with the density of
vibrational modes and with d̃V . A relation between the random walk probabilities Pii(t)
and d̃V does indeed exist but it involves the average of the Pii(t) over all points of
the graph [3]:

P(t) = lim
N→∞

1
N

N∑
i=1

Pii(t) ∼ t−d̃V =2 for t → ∞ (8)

Relation (8) does not imply that d̃D = d̃V since the average P(t) has in general a
di�erent asymptotic behavior from each Pii(t).
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3. Random walks and harmonic oscillations on exactly decimable fractals

Exactly decimable fractals are a restricted class of self-similar structures (i.e. not
all self-similar structures are exactly decimable) which are geometrically invariant
under site decimation. Examples of exactly decimable fractals are the Sierpinski
Gasket [6–9], the T -fractal [10,11], the branched Koch curves [12] and so on
(Fig. 1). In general, all deterministic �nitely rami�ed fractals are exactly decimable.
The solution of both the random walks and the harmonic oscillations problems can be
obtained by standard renormalization group calculations based on a real space decima-
tion procedure [13] as well as on the study of DC resistivity [14].
A geometrical structure is decimation invariant if it is possible to eliminate a subset

of points (and all the bonds connecting these points) obtaining a network with the same
geometry of the starting one. From a mathematical point of view this corresponds to
the possibility of eliminating by substitution a set of equations from system (4) or (7)
obtaining a system which is similar to the initial one after a suitable rede�nition of the
coupling parameter 
. If we consider for example a T -fractal the decimation procedure
consists in transforming each “T” made of three bonds in a simple bond connecting
two points. As it can be easily veri�ed this operation does not change the geometry of
the network but requires a rede�nition of the coupling parameter 
. In general, after a
decimation step, 
 splits into a �nite number of di�erent couplings 
�; �= 1; : : : ; n on
geometrically unequivalent points. In the case of the T -fractal there are two kinds of
inequivalent points: points having one nearest neighbor and points with three nearest
neighbors. This suggests to distinguish between a coupling 
1 and a coupling 
3 to
be used in equations (4) or (7) where point i has respectively one or three nearest
neighbors. Before the decimation we have obviously 
1 = 
3 = 
 but this distinction is
useful to put into evidence the forthcoming splitting.
The splitting of 
 in an at most �nite number of couplings is a necessary condition for

exact decimability. If this condition is ful�lled, the decimation transform can be iterated
and linearized near the �xed point 
� = 0. After the linearization the transformation
laws for the T -fractal are


1 → 
′1 = 3
1 + 1
3; 
3 → 
′3 = 3
1 + 5
3 : (9)

The linearized decimation transform can be represented by a matrix D acting on a
vector with components 
�; � = 1; : : : ; n so that


′� =
∑
�

D��
� : (10)

In our particular case:

D =
(
3 1
3 5

)
: (11)

Decomposing 
� on the basis of eigenvectors of D, as the number of decimation steps
goes to ∞; 
′� tends to the eigenvector corresponding to the largest eigenvalue of D.
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Fig. 1. Exactly decimable fractals: (a) Sierpinski Gasket, (b) T -fractal, (c) branched Koch curves.

Therefore the largest eigenvalue of D, a2, determines the transformation laws of cou-
pling parameters.
Following these steps in the case of random walks one �nds for the parameter � the

transformation:

�→ �′(�) ∼ a2� ; (12)

where � is now the projection of the vector �� on the largest eigenvalue direction.
The presence of the term �iO in Eq. (7) requires a rede�nition of the quantities P̃ij(�)
to assure that, even after the decimation, the initial condition will correspond to the
probability of being in a �xed site equal to 1. One introduces a new parameter c and
writes the transformation law for P̃ij(�) as

P̃ij(�)→ P̃′
ij(�

′) ∼ 1
c
P̃ij(�) : (13)

The di�usive spectral dimension d̃D is obtained using the relation:

P̃OO(�) ∼ � d̃D=2−1 (14)

which holds only for d̃D ¡ 2. As we will discuss later, this is always the case for
exactly decimable fractals. Now one can rewrite Eq. (13) as

P̃ij(�) ∼ cP̃′
ij(�

′) (15)

and observe that since our graphs are in�nite P̃OO(�) and P̃′
OO(�

′) refer to the same
structure and they must have the same functional form. This gives

� d̃D=2−1 = c(a2�′) d̃D=2−1 (16)
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so that

d̃D = 2
log a2=c
log a2

: (17)

As for harmonic oscillations, the invariance of the network under the decimation
procedure gives for !2 the same transformation law obtained for �. The analogue of
Eq. (12) is here

!→!′(!) ∼ a! : (18)

The relation between the density of vibrational modes �(!) and the new �′(!′) is
given by:

�(!)d!= �′(!′)d!′ : (19)

Since in the decimation procedure the initial set of Eq. (4) is reduced of a factor r,
condition (19) leads to the relation:

�(!)→ �′(!′) ∼ r
a
�(!) (20)

From Eq. (20) it follows:

�(!) =
a
r
�′(!′) (21)

so that

!d̃V−1 =
a
r
(a!) d̃V−1 ; (22)

and

d̃V =
log r
log a

: (23)

Comparing Eqs. (17) and (23) one realizes that d̃V = d̃D if the decimation ratio r is
given by

r = a2=c : (24)

This can be shown to be the case for exactly decimable fractals, using results obtained
[2] for the Gaussian model on exactly decimable fractals. The Gaussian model on a
graph is de�ned by the Hamiltonian:

H ({mi}) = J4
∑
i∼j
(�i − �j)2 +

∑
i

m2i �
2
i : (25)

The autocorrelation functions of the model are related to the generating functions P̃ii(�)
of random walks by

P̃ii(�) = 〈�i�i〉{m2i }
zi
1− � ; (26)

where zi is the coordination number of site i and the masses m2i are given by m
2
i =

zi�=(1 − �). Now it can be shown that a decimation procedure implies the following
scaling relations for the coupling J and the masses mi:

J → � J; mi → �mi ; (27)
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where the parameters � and � are related to the expression of the di�usive spectral
dimension by

d̃D =
2 log �
log �=�

: (28)

Now the scaling relations (27) can be rewritten as scaling relations for the �elds �i
and the masses mi:

�i →
√
��i; mi → �

�
mi : (29)

In terms of random walks the transformation on the masses in Eq. (29) does not a�ect
the asymptotic behavior of P̃ii(�) [3] while the �rst of Eq. (29), thanks to relation (26),
implies that P̃ii(�)→ �P̃ii(�) so that we can identify � and 1=c. Since the parameter �
is the decimation ratio r, from Eqs. (28), (23) and (17) equality (24) follows.
Notice also that since it is always �¿� 6= 1 [2], exactly decimable fractals have

d̃D = d̃V ¡ 2. From Eq. (24), the dimensional degeneracy d̃D = d̃V can be obtained
knowing only two out of the three parameters a, r and c. For example the Sierpinski
Gasket has r = 3 and a=

√
5, the T -fractal has r = 3 and a=

√
6.

4. Random walks and harmonic oscillations on non exactly decimable fractals: NTD
and the cutting-decimation renormalization transform

In the previous section we have analyzed spectral dimension degeneracy on exactly
decimable fractals. Now we will consider the case of a class of fractal graphs (NTD)
which are invariant under a more complex transformation T = D · C consisting of the
product of a cutting transform C and a decimation D. We call T a cutting-decimation
transform. It will be shown that P̃ii(�) and �(!) behave di�erently under T and that
NTD are an explicit example of fractals with di�erent di�usive and vibrational spectral
dimensions.
The fractal trees known as NTD [5] can be recursively de�ned as follows: an origin

point O (Fig. 2) is connected to a point 1 by a link, of unitary length; from 1, the tree
splits in k branches of length 2 (i.e. consisting of two consecutive links); the ends of
these branches split in k branches of length 4 and so on; each endpoint of a branch
of length 2n splits in k branches of length 2n+1. NTD can be naturally embedded in a
suitable Euclidean space in such a way that their fractal dimension dF coincides with
their connectivity dimension dC = 1 + ln k= ln 2 [15].
As one can easily verify, NTD are not exactly decimable since after a simple deci-

mation starting from the origin O, one obtains k copies of the original structure joined
together in a point instead of the same NTD. The NTD invariance under a T transform
can be described in the following way (Fig. 3). Suppose to cut the log of the tree in
point 1 and to separate the k branches (cutting transform). Now, each branch can be
obtained from the initial NTD by a dilatation with a factor 2. Eliminating all branches
but one and decimating it (decimation transform), one obtains the original NTD. The
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Fig. 2. An example of non-exactly decimable fractal: an NTD with k = 3.

Fig. 3. Cutting-decimation procedure: (a) cutting of the log of the NTD, (b) separation of the k branches,
(c) decimation of the points labelled by X , (d) recovering of the original NTD.

T transform can be applied to solve the random walks problem. The cutting transform
gives a relation between random walks on the whole tree and random walks on one of
its branches; more precisely one relates P̃treeOO(�), the generating function of the prob-
ability of returning to point O after a random walk on the NTD tree, and P̃branch11 (�),
the generating function of the probability of returning to the starting point 1 after a
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random walk on one of the branches. This relation is given by [15]

P̃treeOO(�) =
P̃branch11 (�) + k

2�P̃branch11 (�) + k
: (30)

The decimation transform on the surviving branch is obtained as for exactly decimable
fractals by the transformation laws

�→ a2�= 4� ;

P̃branch11 (�)→ P̃′branch
11 (�′) =

1
c
P̃branch11 (�) =

1
2
P̃branch11 (�) : (31)

Now since the decimation procedure transforms a branch into the initial tree we have
P̃′branch
11 (�′) = P̃treeOO(�

′) and relation (30) becomes:

P̃treeOO(�) =
2P̃treeOO(4�) + k

4�P̃treeOO(4�) + k
: (32)

Choosing a suitable expression for PtreeOO (�) [15] we obtain from (32):

d̃D = 1 +
log k
log 2

: (33)

As for harmonic oscillations, the cutting transform gives a relation between �tree(!)
and �branch(!); this can be obtained using the following properties [16]: (1) cutting or
adding a �nite number of points or bonds from an in�nite network does not a�ect its
vibrational spectrum; (2) the spectral density �(!) (normalized to 1) of k copies of a
given structure all attached in a point coincides with the corresponding one for a single
structure. From these properties it immediately follows that the cutting transform does
not a�ect the density of modes �(!) so that

�tree(!) = �branch(!) : (34)

Applying the decimation transform we get a = 2 from Eq. (31) while the decimation
ratio is r = 2 so that (20) becomes

�branch(!)→ �′branch(!′) ∼ �branch(!) : (35)

Since �branch(!′)= �tree(!′) relations (34) and (35) give us �tree(!)= �tree(!′) so that
d̃V = 1.
Since d̃D=1+logk=log2 and d̃V=1, NTD trees represent an explicit case of dynamical

dimension splitting. All our results can be generalized [17] to NTD lattices with a
branches growth factor r (or decimation ratio) di�erent from 2. In all these cases we
will �nd again dynamical dimension splitting since d̃V = 1 and

d̃D = d̃V +
log k
log r

: (36)

5. Conclusions

In this paper we have shown how to build an exact renormalization group technique
in real space using a more general reduction procedure than the usual decimation
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transform. This new technique allows to point out the phenomenon of dynamical di-
mension splitting which, as we have explicitly shown, is always absent in the case of
exactly decimable fractals, where d̃D = d̃V ¡ 2. Therefore these structures have very
peculiar statistical mechanical properties and their study does not allow to distinguish
between average and local quantities.
Many examples of spectral dimension splitting can be found even on non fractal-

graphs, such as comb lattices [18] and other branched structures [19]. In general the
situation with d̃D 6= d̃V is quite common so that it becomes particularly important to
study the consequences of dynamical dimension splitting in all the phenomena which
are in
uenced by the value of the spectral dimension such as di�usion, vibrational
dynamics and phase transitions.
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