XIX CONVEGNO NAZIONALE DI FISICA STATISTICA E DEI SISTEMI COMPLESSI
con una giornata dedicata a Stefano Ruffo e Angelo Vulpiani
Mercoledì 25 - Venerdì 27 giugno 2014, Università di Parma
sessione poster
Luca Cattivelli - Università di Parma
The two-particle problem on comb-like topologies
When studying the encounter of two random walkers, in principle one can
map the problem into a one particle problem, where encountering
corresponds to reaching a given (set of) point(s). This mapping
preserves the underlying topology as long as one focuses on infinite
homogeneous structures. However, for inhomogeneous structures this is no
longer the case and the new embedding topology may be extremely
different. Here this peculiar feature is analyzed for the two-particle
problem defined on combs which is mapped into a one-particle problem
defined on book graphs.
Through this mapping we can prove the emergence of the finite collision
property and extend it to the case of particles with any, strictly
positive, velocities \(v_1,v_2>0\). Combs obtained by using as a base
self-similar fractals as well as \(d\)-dimensional combs are also
considered showing that the finite collision property is robust.
Finally, the mapping introduced here allows to get some insights in the
finite-size problem, where encounters are also known to be slow.
Serena di Santo - Università di Parma
A microscopic mechanism for self-organized quasi periodicity in random
networks of non linear oscillators
Self-organized quasi periodicity is one of the most puzzling dynamical
phases observed in systems of non linear coupled oscillators, as the
single dynamical units are not locked to the periodic mean field they
produce, but they still feature a coherent behavior. We consider a class
of leaky integrate- and-fire oscillators on random sparse and massive
networks with dynamical synapses featuring self- organized quasi
periodicity and we show how complex collective oscillations arise from
microscopic dynamics. In particular, we find a simple quantitative
relationship between two relevant microscopic dynamical time scales and
the macroscopic time scale of the global signal. We show that the
proposed relation is a general property of collective oscillations,
common to all the partially synchronous dynamical phases analyzed. We
argue that an analogous mechanism could be at the origin of similar
network dynamics.
Stefano Iubini - CBM-CNRS Orleans
A boundary-induced transition in chains of coupled oscillators
A novel class of nonequilibrium phase-transitions at zero temperature is
found in chains of nonlinear oscillators.
For two paradigmatic systems, the Hamiltonian XY model and the discrete
nonlinear Schroedinger equation, we find that
the application of boundary forces induces two synchronized phases,
separated by a non-trivial interfacial region
where the kinetic temperature is finite.
Dynamics in such supercritical state displays anomalous chaotic
properties whereby some observables are
non-extensive and transport is superdiffusive.
At finite temperatures, the transition is smoothed out, but it still
induces peculiar properties such as a non-monotonous
temperature-profile in the presence of equal-temperature heat baths.
Gianluca Martelloni - Università di Firenze
Comparison between simulation results of 2D and 3D models for
deep-seated landslide
We propose 2D and 3D models for deep-seated landslide triggered by
rainfall. Our models are based on interacting particles or grains and
describes the behavior of a fictitious granular material along a slope
with a wide thickness. The triggering of the landslide is caused by the
passing of two conditions: a threshold speed and a condition on the
static friction of the particles, the latter based on the Mohr-Coulomb
failure criterion according to the infiltration processes. In our scheme
the positive pure pressures, that have local value, should be simply
interpreted as a perturbation of the rest state of each grain, i.e., the
pore pressure function can be interpreted as a time-space dependent
scalar field acting on the particles. The resulting numerical method,
similar to that of molecular dynamics (MD), is based on the use of an
interaction potential between the particles, similar to the
Lennard-Jones one. Moreover by means of this type of force we can also
simulate a compressed state of the particles, according to a stress
state of the slope material. Although the models proposed are still
quite schematic, our results encourage the investigations in this
direction. The results are consistent with the behavior of real
landslides induced by rainfall and an interesting behavior emerges from
the dynamical and statistical points of view. Emerging phenomena such as
fractures, detachments and arching can be observed (Martelloni et al.,
2012; Martelloni et al., 2013). In particular, the models reproduce well
the energy and time distribution of avalanches, analogous to the
observed Gutenberg-Richter and Omori power law distributions for
earthquakes. We observe a power law distribution also considering the
number of the particles in motion. We note that other natural hazards
(landslides, earthquakes and forest fires) also exhibit similar
distributions (Malamud et al., 2004; Turcotte 1997), characteristic of
self-organized critical systems (Turcotte and Malamud 2004). From
statistical point of view we observe an interesting characteristic of
this type of systems, i.e., a transition of the mean energy increment
distribution from a Gaussian to a power law after decreasing the
viscosity coefficient up to zero. This behavior is compatible with the
corresponding velocity increase, i.e., such cross-over in the
distribution means that we pass from a relative slow movement to a
relative fast slow movement. This results is obtained also within a
single simulation for fixed viscosity coefficient (also for zero value
of this parameter), i.e., if we consider the distribution of kinetics
increment in an initial phase of movement of the system we observe a
Gaussian distribution (all particles have similar velocity), while,
continuing the simulation, a power law is detected due the presence of
particles at higher velocity. Actually, we observe a characteristic
velocity and energy pattern typical of a stick-and-slip dynamics,
similar to real landslides behavior (Sornette et al., 2004). We have
also shown that it is possible to apply the method of the inverse
surface displacement velocity for predicting the failure time (Fukuzono
1985). Then we achieve a complete sensibility analysis of the 2D model
parameters considering also the fluctuations necessary to take into
account the variability of the soil. Moreover the simulations are
achieved considering both initial regular configuration of the grains
and random configuration ones where each particle is shifted from
equilibrium state according to a Gaussian distribution of the position
shifts. In conclusion the results of 2D and 3D models are similar, but
the three-dimensional scheme allow a better stability concerning the
observed kinetics energy and velocity that can become very high for some
particles, during the slip, due to the effect of the repulsive forces,
obviously equal values of the potential parameters.
References
Fukuzono T (1985) A new method for predicting the failure time of a
slope. Proc. 4th Int. Conf. Field Workshop Landslides, 145-150.
Tokyo: Jpn. Landslide Soc.
Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide
inventories and their statistical properties. Earth Surface Processes
and Landforms, 29: 687-711
Martelloni G, Bagnoli F, Massaro E (2012) A computational toy model for
shallow landslides: Molecular Dynamics approach. Communications in
Nonlinear Science and Numerical Simulation
Martelloni G., Bagnoli F. (2013) Infiltration effects on a
two-dimensional molecular dynamics model of landslides. In NHAZ (Natural
Hazards).
Sornette D, Helmstetter A, Grasso JR, Andersen JV, Gluzman S, Pisarenko
V (2004) Towards Landslide Predictions: Two Case Studies. Physica A,
338: 605-632
Turcotte DL (1997) Fractals and chaos in geology and geophysics.
Cambridge University Press, Cambridge, (2nd Edition)
Turcotte DL, Malamud BD (2004) Landslides, forest fires, and
earth-quakes:examples of self-organized critical behavior. Physica A,
340: 580-589
Giovanna Pacini - Università di Firenze
Science Cafès projects: from local network to an european
partecipative platform
We illustrate two projects in which we are involved:
"La scienza ha fatto rete" (networking Italian science cafes) and
"Scicafè2.0".
For the first project we present the italian web site of the network.
The "SciCafe2.0" project aims at exploiting the knowledge and the
"best practices" accumulated during the Science Cafés
experience for promoting crowdsourcing and collective intelligence, in
an Internet scenario (mixed with real-life encounters) for the
Collective Awareness Platforms UE call.
In particular, we discuss the cognitive background below a "human"
partecipative Internet platform.
Finally, we present some examples of our radio transmission "RadioMoka"
In collaboration with: F. Bagnoli and R. Nerattini.
Matteo Paoluzzi - IPCF-CNR
Active particles in speckle patterns
The random energy landscapes developed by speckle fields
can be used to confine and manipulate a large number
of micro-particles with a single laser beam. By means of
molecular dynamics simulations, we investigate the
static and dynamic properties of an active suspension
of swimming bacteria embedded into speckle patterns.
Looking at the correlation of the density fluctuations
and the equilibrium density profiles, we observe a
crossover phenomenon when the forces exerted by
the speckles are equal to the bacteria's propulsion.
Dominique Persano Adorno - Università di Palermo
Monte Carlo simulation of the electron spin relaxation process in GaAs
and Si crystals
The understanding of the spin-related processes and spin transport in
GaAs, Si and related compounds is important for solid state physics and
possible applications of these materials in spintronics. Research in the
field of spin-electronics are motivated by the possibility to develop
electronic devices that use the electron spin rather than charge as a
state variable for processing and storing information. This could allow
low-power operation and might also have applications in quantum
computing. However, the utilization of spin polarization as information
carrier must face the disadvantage that each initial non-equilibrium
orientation decays over time during the transport. Hence, to open the
way to implementation of spin-based devices, the features of spin
relaxation at relatively high temperatures, jointly with the influence
of transport conditions, should be firstly fully understood and
interpreted in experiment-related terms, in order to find out the best
conditions to achieve long spin relaxation times (or spin diffusion
lengths) in spintronic devices.
In this contribution we show the results of numerical calculations of
the spin lifetime for conduction electrons drifting in lightly doped
n-type GaAs or Silicon channels in the presence of static or fluctuating
electric fields. To model both electronic and spin dynamics and to
estimate the spin relaxation time, we employ a semiclassical ensemble
Monte Carlo method. Our findings are in good agreement with those
obtained by using different theoretical approaches and with the most
recent experimental results obtained in spin transport devices.
Moreover, we also show and discuss how spin lifetimes change in a wide
range of temperature and electric field amplitude, even where
experimental and/or analytical data are not yet available. From this
point of view, the results obtained by our Monte Carlo simulations
represent a guide for future experimental studies and could be very
useful in a more effective optimization of room-temperature
semiconductor- based spintronic devices.
In collaboration with: , N. Pizzolato S. Spezia, C. Graceffa and B.
Spagnolo
Maria Gloria Pini - ISC-CNR Firenze
FINITE SIZE EFFECTS ON THE SYMMETRY OF METASTABLE CONFIGURATIONS
IN THE CLASSICAL ONE-DIMENSIONAL PLANAR SPIN MODEL
WITH COMPETING EXCHANGE INTERACTIONS
The classical one-dimensional (1D) planar spin model with competing nearest neighbor
(nn) and next nearest neighbor (nnn) exchange interactions (\(Jnn>0\) and \(Jnnn<0\),
respectively) was introduced decades ago [1] to account for the observation of a
modulated phase (a spiral or helicoid) in a class of magnetic crystals and alloys,
including rare-earth elements and manganese compounds. In the thermodynamic limit, the
modulated phase was proved to exist provided that \(G=Jnn/(4|Jnnn|)<1\) and the
relative
angle between neighboring spins is given by \(+arccos(G)\) or \(-arccos(G)\). Opposite
signs
correspond to equivalent helicoids with opposite sense of rotation (or chirality).
In the present work, we investigate the effect of finite size on the equilibrium
states of such a model. We are driven by the interest for artificially created
nanoscale magnetic structures: for example, an ultrathin film of Ho [2], made of N
parallel ferromagnetic planes, where the vector magnetization of each atomic layer is
confined to the film plane and is exchange coupled to the magnetization of neighboring
layers, with opposite signs of the exchange constant depending on the layers' position
(positive between nn layers and negative between nnn ones).
Finding the magnetization profile across the film thickness, while accounting for the
discrete location of atomic layers, is a difficult task even in a mean field
approximation, where the problem is reduced to a 1D one, since it requires the
necessity to solve a system of \((N-1)\) equations, for the \((N-1)\) relative
orientation
angles, obtained after the minimization of the thermodynamic potential. Except for
very small values of \(N\), finding the exact solution is quite demanding; thus, to
obtain
an estimate of the equilibrium configurations, most authors resorted either to
time-consuming iterative procedures [2] or to a continuous approximation which allowed
to obtain analytical results [3].
In this work we make use of a theoretical method [4], recently developed to find the
noncollinear canted magnetic states of ultrathin ferromagnetic films with competing
surface and bulk anisotropies [5], to calculate the magnetization profile in the case
of our model with competing nn and nnn exchange interactions. The essence of the
method is to reduce the difficult problem of finding minima of the thermodynamic
potential in the \((N-1)\)-dimensional space of the \((N-1)\) relative orientation
angles, to
the much simpler problem of finding the \((N-1)\) roots of a function in the
one-dimensional space of the first relative orientation angle. Subsequently, the roots
are analyzed in order to determine which of them correspond to stable, metastable or
unstable states.
In this way, we were able to determine, in a very quick and quite accurate way, the
equilibrium states of the model up to \(N=15\). In addition to the ground state, which
is
symmetric with respect to the center of the chain (or, equivalently, to the center of
the film), we found metastable states of two kinds: either antisymmetric or without a
definite symmetry ("ugly" states). In the ground state, the modulated configuration is
non uniform along the finite size of the chain, but the chirality of the helicoid does
not change. In contrast, the metastable states are characterized either by a change of
chirality in the middle of the chain (antisymmetric state) or a change of chirality
located away from the middle of the chain ("ugly" state). The above interpretation was
confirmed performing a further analysis of the various modulated configurations in the
framework of a discrete nonlinear mapping approach developed years ago [6].
The most interesting result, coming from our exact calculations, is that the
antisymmetric states are metastable for even values of \(N\) and unstable for odd
values
of \(N\), while the "ugly" states are always metastable. This fact, being a
consequence of
discretization and finite size, can by no means be evidenced using a continuum model
[3]. Clearly, as \(N\) grows, any difference between even and odd number of \(N\) is
found
to
decrease, and for \(N\) tending to infinity it is expected to vanish.
[1] T. A. Kaplan, Phys. Rev. 116, 888 (1959); A. Yoshimori, J. Phys. Soc. Jpn. 14, 807
(1959); J. Villain, J. Phys. Chem. Solids 11, 303 (1959).
[2] E. Weschke et al., Phys. Rev. Lett. 93, 157204 (2004).
[3] P. I. Melnichuk, A. N. Bogdanov, U. K. Roessler, and K.-H. Mueller, J. Magn. Magn.
Mater. 248, 142 (2002).
[4] A. P. Popov, A. V. Anisimov, O Eriksson, and N. V. Skorodumova, Phys. Rev. B 81,
054440 (2010).
[5] A. P. Popov, J. Magn. Magn. Mater. 324, 2736 (2012).
[6] L. Trallori, P. Politi, A. Rettori, M. G. Pini, and J. Villain, Phys. Rev. Lett.
72, 920 (1994).
In collaboration with A.P. Popov and A. Rettori
Matteo Rossi - Università di Parma
Decoherence and non-Markovianity of a two-qubit system interacting with a stochastic
classical field
Studying the interaction of a quantum system with its environment
plays a fundamental role in the development of quantum technologies. De-
coherence may be induced by classical or quantum noise, i.e. by the inter-
action with an environment described classically or quantum-mechanically.
The classical description is often more realistic for environments with a
very large number of degrees of freedom and it has also been shown that
even certain quantum environments may be described with equivalent
classical models. In this work, we consider single- and two-qubit systems
coupled to classical stochastic fields, focusing on Gaussian processes, and
address both the dynamics of quantum correlations, entanglement and
discord, and the non-Markovianity induced by the external fields.
Fabio Sartori - Università di Parma
Random walks on combs: Covering and Hitting times
In this work we consider a simple random walk embedded on a
two-dimensional regular comb and we address two, intrinsically related
problems, i.e. the set of hitting times \(\{ H_{ij} \}\) and the
covering
time \(\tau\). As for the former, by exploiting the resistance method,
we
get analytically the exact expression for the set of hitting times,
whose mean directly gives the global mean first passage time on combs.
We also notice that the mean time to first reach any end-node of a side
chain, starting from the backbone, scales as \(\sim L^3\). This turns
out
to be the leading term for the covering time, as shown via numerical
simulations. Finally, we investigate the problem of "imperfect
covering", where we look for the mean time \(\tau(x)\) such that a
fraction \(x\) of the underlying structure has been covered. The growth
of
\(\tau(L,x) \approx (a x^{-2/3}-b)\log (L)\) suggests optimization
strategies, as a confidence interval of \(1\%\) allows a drastic
reduction
of the covering time: \(\tau(2^{10},1) / \tau(2^{10},0.99) \approx 3\).
Silvia Zaoli - Università di Padova
Stochastic model for the motility of self-propelling particles
The motility of microorganisms like bacteria and protists in liquid
media is an important issue and it is not yet fully understood. Previous
theoretical approaches dealing with ''microscopic'' description of the
motion have modelled the propelling force exerted by the organism itself
as a white noise term in the equation of motion. We will present
experimental results for protists of the genus Colpidium, ciliates,
which do not agree with the white noise hypothesis. We propose a new
stochastic model that is in good agreement with the experimental
statistical properties of ciliates' motion, such as velocity
distribution, velocity autocorrelation and mean square displacement.