9:30-10:00 | registrazione |
10:00-10:40 | Paolo Politi - CNR ISC Firenze
Ground state search in artificial spin-ice ![]()
Artificial spin-ices are two dimensional arrays of single-domain, Ising
type magnetic dots, whose size is too large to undergo thermal
fluctuations. Therefore, they are strongly out-of-equilibrium systems
whose dynamics are due to the driving magnetic field and to magnetostatic
interactions among dots.
Square spin-ices have a well defined ground state, in spite of
frustration. Much work is addressed to understand how the system can be
driven towards the ground state and how dynamics proceeds under the
application of a magnetic field. We give some answers, giving a
description of dynamics in terms of vertex configurations [1] and
highlighting the importance of disorder and randomness [2]: quenched
disorder in the system and randomness in the time dependence of the
driving field.
In collaboration with Zoe Budrikis and Robert L. Stamps (University of Western Australia and University of Glasgow). [1] Phys. Rev. Lett. 105, 107201 (2010). [2] Phys. Rev. Lett. 107, 217204 (2011). |
10:40-11:00 | Antonio Lamura - CNR IAC Bari
Semiflexible polymers under external fields ![]()
We have numerically investigated by using Brownian dynamics, semiflexible
polymers confined in a plane in two cases: under an external force for a
tethered chain and in shear flow for a free one.
Such situations are relevant for adsorbed biological filaments.
Our results confirm experimental results and extend earlier theoretical
predictions.
|
11:00-11:20 | Simona Olmi - CNR ISC Firenze
Collective dynamics in sparse networks ![]()
The dynamics of sparse networks is investigated both at the
microscopic and macroscopic level, upon varying the connectivity. In
all cases (chaotic maps, Stuart-Landau oscillators, and leaky
integrate-and-fire neuron models), we find that a few tens of random
connections are sufficient to
sustain a nontrivial (and possibly irregular) collective dynamics. At
the same time, the microscopic evolution turns out to be extensive,
both in the presence and absence of a macroscopic evolution. This
result is quite remarkable, considered the non-additivity of the
underlying dynamical rule. |
11:20-11:50 | pausa caffè |
11:50-12:10 | Claudio Borile - Università di Padova
Spontaneously Broken Neutral Symmetry ![]()
Spontaneous symmetry breaking plays a fundamental role in many
areas of condensed matter and particle physics. A fundamental
problem in ecology is the elucidation of the mechanisms responsible
for biodiversity and stability. Neutral theory, which makes the
simplifying assumption that all individuals (such as trees in a tropical
forest) –regardless of the species they belong to–
have the same prospect of reproduction, death, etc., yields gross
patterns that are in accord with empirical data. We explore the
possibility of birth and death rates that depend on the population
density of species while treating the dynamics in a species symmetric
manner. We demonstrate that the dynamical evolution can lead to a
stationary state characterized simultaneously by both biodiversity and
spontaneously broken neutral symmetry.
|
12:10-12:30 | Piero Olla - ISAC CNR Cagliari
Activation of phytoplankton blooms by seasonal forcing
and demographic noise. ![]()
Population models, such as those for plankton dynamics,
are often based on a mean-field approximation of individual
behaviors. A weakly stable mean-field configuration, however,
can be destabilized by demographic noise. In certain cases,
such destabilization persists even in the thermodynamic limit.
It is shown how this effect can be exploited, in a simple
predator-prey model, to produce behaviors similar to algal
blooms.
|
12:30-12:50 | Mikko Alava - Aalto University
Deciding about manuscripts: the dynamics of refereeing ![]()
tba
|
12:50-14:30 | pausa pranzo |
14:30-15:30 | ./sessione poster |
15:30-15:50 | Thomas, Michaels, ETH Zurich
Thermal fluctuations and domain walls in ultra-thin magnetic nanowires ![]()
The possibility of inducing domain-wall (DW) motion in magnetic
nanowires by means of spin polarised electric currents has recently renewed
theoretical interest in this field. The problem is usually modelled
on a micro-magnetic approach, but ignoring any thermal fluctuations.
However, some relevant experimental facts - like the correct order of magnitude of the critical current needed for DW motion - still lack
satisfactory
explanations. We thus developed a general theoretical framework, which
highlights the crucial role played by thermal fluctuations at the centre
of
DWs. The latter qualitatively and quantitatively accounts for a variety
of problems relating to DWs at finite temperatures. Examples are the
shrinking of magnetic domains observed in Fe ultra-thin
films on Cu(001)
substrates with increasing temperature, the inverse symmetry breaking in
ultra-thin films
and the renormalisation of the critical current for
domain-
wall motion at finite
temperatures.
|
15:50-16:10 | Ruggero Vaia, CNR-ISC Firenze
Transmitting a quantum state over an arbirarily long uniform channel with
almost perfect quality ![]()
An effective one-dimensional hopping model can be realized in several
systems, such as spin chains, arrays of quantum dots or optical lattices.
Each site of the array can be thought of as a `qubit', i.e. an object
endowed with a 2-dimensional Hilbert space of states, and the natural
dynamics of such an open chain of qubits can be exploited for transferring
a quantum state between its ends, a task which is required for connecting
registers in a quantum computer. Indeed, assuming that the first qubit is
initially in a given state, the purpose of state transfer is that the
dynamics of the chain leads at some time the same state to belong to the
qubit sitting on the opposite end.
In a uniform chain (with uniform hopping amplitudes) the quantum-transfer process is found to be impossible due the effect of dispersion. It is known that perfect transmission can occur if the hopping amplitudes are properly modulated along the channel; however, such an engineered setup is not likely to be realizable in a lab. Therefore we consider a chain with uniform hopping amplitudes and just allow the two extremal pairs of them to be weaker. Surprisingly, provided that the extremal couplings have suitable optimal values depending on the channel length, our setup gives an extremely high transfer quality, with average fidelity larger that 0.99 even in the limit of an infinitely long channel. The transmission time is ballistic and the quality of quantum transfer keeps being high in a large neighborhood of the optimal values so there is no need to finely tune the extremal hopping amplitudes in an experiment. |
16:10-16:30 | Roberto Franzosi - CNR ISC Firenze
Stati localizzati e a temperatura negativa nell'equazione non
lineare di Schrödinger discretizzata ![]()
Le applicazioni degli atomi ultrafreddi, in diversi settori della
fisica, sono
in continua crescita. Ciò è dovuto alla grande
versatilità che
questi sistemi
fisici offrono. L'alto grado di controllo con cui essi possono
essere "preparati", le nuove possibilità di osservazione (in
situ) sviluppate, ed il fatto che la
fisica che sta alla loro base consenta di interpolare tra regimi
dinamici che
vanno da quelli più fortemente quantistici a quelli
classici, li
rendono
dei sistemi fisici "speciali".
Oggigiorno i gas di atomi ultrafreddi trovano applicazione
nell'ambito
dell'informazione quantistica, sono stati proposti come sistemi per
realizzare simulatori quantistici, per esempio di teorie di campo
relativistiche.
Nel presente intervento vedremo come condensati in reticoli ottici
e nel
regime superfluido, possano essere utilizzati nell'ambito della
meccanica
statistica per realizzare stati dinamici localizzati ("breathers")
e
stati termodinamici a temperature negative.
In particolare vedremo che l'equazione non lineare di
Schrödinger
discretizzata, che
descrive appunto la dinamica nel regime superfluido di condensati
in un
reticolo ottico, presenta una regione dei parametri dove tale
sistema evolve
verso uno stato caratterizzato da una densità finita di
"breathers" e una
temperatura negativa. Tale stato è metastabile ma converge
verso
quello di
equilibrio su scale di tempo astronomiche. Stati stazionari a
temperatura
negativa sono sperimentalmente accessibili sfruttando meccanismi di
dissipazione, o tramite un'espansione libera di pacchetti
inizialmente a
temperatura positiva.
S. Iubini, R. Franzosi, R. Livi, G.-L. Oppo and A. Politi,
"Negative
Temperature States in the Discrete Nonlinear Schroedinger
Equation", in
preparazione.
R. Franzosi, "Geometric microcanonical thermodynamics for
systems with
first integrals", Phys. Rev. E 85, 050101 (2012).
R. Franzosi, R. Livi, G-L. Oppo, and A Politi, "Discrete
Breathers
in Bose-Einstein Condensates", Nonlinearity 24, R89 (2011).
R. Franzosi, "Microcanonical entropy and dynamical measure of
temperature for systems with two first integrals", J. Stat. Phys.
(2011)
143: 824-830.
R. Livi, R. Franzosi and G.-L. Oppo, "Selflocalization of
Bose-Einstein condensates in optical lattices via boundary
dissipation",
Phys. Rev. Lett. 97, 060401 (2006).
|
16:30-17:00 | pausa caffè |
17:00-17:40 | Silvio Franz - LPTMS Université Paris Sud Orsay
Viaggio di andata e ritorno tra i Liquidi Vetrosi e la Teoria dei Campi. ![]()
La ricerca degli ultimi anni ha enfatizzato il ruolo delle
fluttuazioni e della crescita di correlazioni nella descrizione della
dinamica dei liquidi
vetrosi. In tale contesto è possibile invocare universalità
statistica e descrivere le proprietà dinamiche dei liquidi in
termini
di teorie di campo efficaci. Discuterò 1) come ricavare tali teorie
efficaci a partire dalla teoria microscopica. 2) alcune predizioni e
conseguenze della teoria.
Basato su lavori in collaborazione con G. Parisi, F. Ricci-Tersenghi, T. Rizzo, P.-F. Urbani e F. Zamponi |
17:40-18:00 | Miguel Berganza, IPCF-CNR Roma
Criticality of continuous spin models in random graphs. A Monte-Carlo
parallel algorithm in GPUs. ![]()
We have developed a parallel GPU-based Monte-Carlo algorithm devoted to
the analysis of continuous spin models in disordered graphs. This tool
facilitates the study of the critical behaviour of the XY model on a Levy
graph, such that the bond probability decays as a power, rho, of the
distance between bonds with respect to their position in a given
(short-range) lattice. Varying rho from infinity to zero, the Levy graph
interpolates between the lattice and the uncorrelated (Erdos-Rany) graph.
Renormalization group arguments allow to define three regimes of rho in
correspondence with different critical behaviours of the model: for
sufficiently low rho the model presents a phase transition of the
mean-field type, whether for large values of rho the transition is
supposed to belong to the Kosterlitz-Thouless universality class. We
provide numerical support of these results, which are in agreement with
previous
studies of the XY model in complex topologies (Cassi, Phys. Rev. Lett. 68
3631 (1992)). Our research is motivated by the study of continuous spin
models with disordered, long-range interactions, relevant in the
statistical description of modes in random lasers (Conti and Leuzzi Phys.
Rev. E 83 134204 (2011)).
|