Thomas, Michaels, ETH Zurich # Thermal fluctuations and domain walls in ultra-thin magnetic nanowires # The possibility of inducing domain-wall (DW) motion in magnetic nanowires by means of spin polarised electric currents has recently renewed theoretical interest in this field. The problem is usually modelled on a micro-magnetic approach, but ignoring any thermal fluctuations. However, some relevant experimental facts - like the correct order of magnitude of the critical current needed for DW motion - still lack satisfactory explanations. We thus developed a general theoretical framework, which highlights the crucial role played by thermal fluctuations at the centre of DWs. The latter qualitatively and quantitatively accounts for a variety of problems relating to DWs at finite temperatures. Examples are the shrinking of magnetic domains observed in Fe ultra-thin films on Cu(001) substrates with increasing temperature, the inverse symmetry breaking in ultra-thin films and the renormalisation of the critical current for domain- wall motion at finite temperatures.