|
Stefano Mossa |
|
|
CEA Grenoble |
Abstract
The Debye approximation for the acoustic modes in crystals is based
on the assumption that the medium is an elastic continuum. It holds
true for wavelengths much larger than the typical interatomic distance
and gradually breaks down on approaching the microscopic scale.
In glasses, the structural disorder undermines this approximation in a
quite subtle way, still not completely clarified. Using molecular dynamics
simulations of a model monoatomic glass of unprecedent size, we will show
that the breakdown of the Debye approximation appears in glasses quite
abruptly. It shows up as a significant reduction of the sound velocity
with respect to the macroscopic value, on the mesoscopic length-scale
of the order of ten interatomic spacings. We will also show that this
features allows us to rationalize the ubiquitous excess over the Debye
level found in the specific heat of glasses at low temperatures.
G. Monaco and S. Mossa, preprint arXiv:0901.4736v1 (2009)