LUNGHI - Vespignani - Caselle Vecchi e nuovi risultati sul modello di Ising in tre dimensioni. Abstract: Nonostante gli impressionanti sforzi compiuti negli ultimi 50 anni nel tentativo di trovare una soluzione esatta, il modello di Ising in 3 dimensioni rimane uno dei problemi irrisolti piu' affascinanti e ricchi di sorpese della meccanica statistica teorica. In questo seminario dopo una breve introduzione al modello ed ad alcuni risultati noti da tempo (in particolare l'esistenza di una trasformazione di dualita' che lega il modello con la teoria di gauge di gruppo Z2 e la possibilita' di descrivere il modello in termini di una teoria di campo phi^4), discuteremo alcuni progressi piu' recenti ed in particolare: 1] I tentativi di descrivere il modello di Ising usando la teoria delle stringhe 2] L'esistenza di stati legati nella fase di bassa temperatura del modello -Pietronero MEDI - Gabrielli Gravitational evolution of a perturbed lattice and its fluid limit We apply a simple linearization, used standardly in solid state physiscs, to describe the evolution under its self-gravity of an infinite perfect lattice perturbed from its equilibrium. In the limit that the initial perturbations are restricted to wavelengths much larger than the lattice spacing, the evolution corresponds exactly to that usually derived by cosmologists from an analogous linearization of the Lagrangian formulation of the dynamics of a pressureless self-gravitating fluid, including the so called Zeldovich approximation. Our less restricted approximation, however, allows one to trace the evolution of the fully discrete distribution until the time when the particles approach one another, with modifications of the fluid limit explicitely depending on the lattice spacing. - Politi Dinamiche di crescita di fronti unidimensionali Consideriamo una superficie o interfaccia in una dimensione, u(x,t), il cui profilo piatto è linearmente instabile e la cui evoluzione temporale è descritta da una equazione differenziale del tipo u_t = F[u]. Ci chiediamo se è possibile stabilire alcune delle sue proprietà dinamiche dalla sola conoscenza delle sue soluzioni stazionarie, F[u]=0. Per alcune classi di equazioni è possibile dimostrare in maniera rigorosa che questo legame esiste e passa attraverso la dipendenza della lunghezza d'onda di tali soluzioni dalla loro ampiezza: se al crescere della seconda (l'ampiezza) cresce anche la prima (la lunghezza d'onda), e solo in questo caso, abbiamo un processo di coarsening per cui, dinamicamente, il fronte sviluppa una lunghezza caratteristica che cresce nel tempo. La legge con cui cresce è ricavabile analiticamente. - Borgonovi Quantum signature of the Classical Disconnection Border A quantum Heisenberg spin chain with anisotropic coupling and all-to-all interspin interaction has been analyzed using Bose statistics. In (JSP 116, 1435 (2004)) the existence of a disconnection threshold in the classical version has been demonstrated. The question of finding a quantum signature of the classical disconnection border has been addressed here. A quantum disconnection border, motivated by purely quantum considerations is given. The presence of a disconnection border allows the study of Macroscopic Quantum Phenomena, like Macroscopic Quantum Tunneling and Macroscopic Quantum Coherence. Indeed, below this border, at variance with the classical case, the total magnetization can flip its sign through Macroscopic Quantum Tunneling. We also discuss the dynamical relevance of such border with respect to the magnetic reversal times, in the light of the results found in the classical model. - Baldassarri Dinamica di stick-slip nei materiali granulari: Analisi statistica di un'esperimento Un materiale granulare sottoposto ad un debole sforzo risponde con una dinamica intermittente, durante la quale dei periodi di quiete intervallano rapidi movimenti di assestamento dei grani (dinamica di stuck-slip). L'estrema irregolarita' della dinamica genera l'impressione di una intrinseca irriproducibilita' del fenomeno che sfida la possibilita' di una sua descrizione quantitativa. Al contrario, la descrizione statistica della dinamica osservata in un esperimento ha permesso di cogliere comportamenti analoghi a quanto osservato in un fenomeno estremamente diverso, quale l'effetto Barkhausen nei materiali magnetici. Questa sorprendente analogia ci ha permesso di formulare un modello fenomenologico del sistema che, sebbene si basi su poche ipotesi motivabili fisicamente, riproduce quasi quantitativamente la complessa dinamica osservata negli esperimenti. Lo studio sembra individuare quali siano le caratteristiche fisiche rilevanti per determinare la dinamica di stick-slip. Se da una parte cio' giustifica l'universalita' riscontrata con altri fenomeni fisici, quali il succitato Effetto Barkhausen o l'attrito tra solidi, dall'altra segna la via per uno studio "microscopico" del mezzo granulare. - Mossa link - Pagnani Regulatory Control in Boolean Networks We explore the static behavior of large Boolean networks with methods recasting Boolean regulation into a constraint satisfaction problem. Our analysis includes a modified version of the leaf-removal algorithm as well as belief and survey propagation. This allows to explore the complex solution-space structure of the problem. We find a phase transition from simple to complex regulatory control, and identify relevant regulatory variables which select the fixed points of the network within the global solution space. Some biological implications on Biological Gene Regulatory Networks will be also discussed. - Cencini Nonlinearly driven synchronization in chaotic systems Synchronization transitions are investigated in coupled chaotic systems, in particular chaotic maps. Depending on the relative weight of linear versus nonlinear instability mechanisms associated to the single map two different scenarios for the transition may occur. When only two maps are considered we always find that the critical coupling varepsilon_l for chaotic synchronization can be predicted within a linear analysis by the vanishing of the transverse Lyapunov exponent lambda_T. However, major differences between transitions driven by linear or nonlinear mechanisms are revealed by the dynamics of the transient toward the synchronized state. As a representative example of extended systems a one dimensional lattice of chaotic maps with power-law coupling is considered. In this high dimensional model finite amplitude instabilities may have a dramatic effect on the transition. For strong nonlinearities an exponential divergence of the synchronization times with the chain length can be observed above varepsilon_l, notwithstanding the transverse dynamics is stable against infinitesimal perturbations at any instant. Therefore, the transition takes place at a coupling varepsilon_{nl} definitely larger than varepsilon_l and its origin is intrinsically nonlinear. The linearly driven transitions are continuous and can be described in terms of mean field results for non-equilibrium phase transitions with long range interactions. While we have some evidences that the transitions dominated by nonlinear mechanisms is discontinuous. - Castellano Avalanche asymmetry in crackling noise and the sign of the effective mass. The response of materials and the functioning of devices are often associated to crackling noise, which encodes fundamental physical properties of the system. The asymmetry of avalanche shapes, commonly observed in many diverse noisy phenomena, still needs an explanation. We show that such asymmetry is a direct signature of the presence of inertial effects and, in particular, of the sign of the effective mass. We present experiments on the Barkhausen effect (the noise induced in magnets by the jerky motion of domain walls as they interact with impurities) and quantitatively explain the results in terms of the propagation of eddy currents in the material. The leftward asymmetry of avalanche pulses indicates the presence of a negative effective mass for ferromagnetic domain walls. These results provide a method to determine the underlying effective mass from a generic noisy signal. - Lepri Mode-coupling theory of anomalous transport in one dimension In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long--time correlation of the corresponding currents. Indeed, power--law decay of correlations is expected to be a generic feature of one--dimensional systems in presence of conservation laws. A relevant example is the divergence of the thermal conductivity coefficient observed numerically in chains of anharmonic oscillators and 1D gases. To what extent are those observations universal? To answer this question we studied a 1d version of mode-coupling equations, which describe the relaxation of fluctuations of the displacement field. We show that the latter admit scaling solutions in the small-wavenumber limit which, at variance with usual linearized hydrodynamics, are not exponential. The theory predicts that the heat current autocorrelation should decay as t^{-2/3}, which is in agreement with recent simulation results on the 1D diatomic gas. - Verrucchi Quantum critical enhancement of multipartite entanglement in spin systems We study the field dependence of the entanglement of formation in one- and two-dimensional quantum spin systems displaying a T=0 field-driven quantum phase transition. Making use of exact results and quantum Monte Carlo data for the entanglement of formation, we show how entanglement can be a fundamental tool to understand the quantum critical behavior and to find ``special states'' that usual magnetic observables do not detect. We find that the ground state of anisotropic two-dimensional S=1/2 antiferromagnets in a uniform field takes the classical-like form of a product state for a particular value and orientation of the field, at which the purely quantum correlations due to entanglement disappear. Moreover, the factorized state both in 1D and 2D systems is found to precede the quantum phase transition. It could hence represent a crucial step towards a global rearrangement of the ground state, in view of the quantum phase transition. Finally, we show that the field-induced quantum phase transition present in the models is unambiguously characterized by a cusp minimum in the pairwise-to-global entanglement ratio R, marking the quantum-critical enhancement of "multipartite" entanglement. - Illuminati (non l'ho trovato) BREVI - Baronchelli EMERGENCE OF COMMUNICATION IN LANGUAGE GAMES The self-organization of communication conventions in a population of agents is object of growing attention. Besides its intrinsic theoretical relevance, in fact, it has recently acquired importance for many applications to artificial and distributed systems. In this talk I will illustrate a very simple model in which agents play pairwise games in order to negotiate conventions, i.e. associations between forms and meanings. The model describes the emergence of a communication system and in addition exhibits a rich phenomenology, while its simplicity makes it suitable for analytical approaches. - Cerruti Charge fluctuations and electron-phonon interaction in the finite-U Hubbard model In the past months several experiments pointed out an important role of the electron-phonon (el-ph) interaction in many physical properties of the cuprates. These recent findings have triggered a renewed interest for a theoretical understanding of the el-ph properties in strongly correlated sistems. In this contribution we employ a gaussian expansion within the finite-U slave-bosons formalism to investigate the momentum structure of the electron-phonon vertex function in the Hubbard model as function of U and n. The suppression of large momentum scattering and the onset of a small-q peak structure, parametrized by a cut-off q_c, are shown to be essentially ruled by the band narrowing factor Z_{\rm MF} due to the electronic correlation. A phase diagram of Z_{\rm MF} and q_c in the whole U-n space is presented. Our results are in more than qualitative agreement with a recent numerical analysis and permit to understand some anomalous features of the Quantum Monte Carlo data. - Sbragaglia Lattice Boltzmann Models in microchannel flows link - Ngo Inferring the diameter of a biopolymer from its stretching response We investigate the stretching response of a thick polymer model by means of extensive stochastic simulations. The computational results are synthesized in an analytic expression that characterizes how the force versus elongation curve depends on the polymer structural parameters: its thickness and granularity (spacing of the monomers). The expression is used to analyze experimental data for the stretching of various different types of biopolymers: polypeptides, polysaccharides and nucleic acids. Besides recovering elastic parameters (such as the persistence length) that are consistent with those obtained from standard entropic models, the approach allows to extract viable estimates for the polymers diameter and granularity. This shows that the basic structural polymer features have such a profound impact on the elastic behaviour that they can be recovered with the sole input of stretching measurements. - Anfossi Entanglement and insulator-superconductor transition in the Hirsch model. Authors: A. Anfossi, A. Montorsi Abstract: We use the notion of entanglement, and its measures, to get a newer and deeper insight on the phenomenon of Quantum Phase Transitions (QPTs), i.e. phase transitions occurring in quantum systems at vanishing temperature. In particular, We consider the Hubbard model with bond charge interaction x (Hisrch Model). As a first result [1], we reproduce the exact phase diagram for x=1 --integrable case-- by means of measures of entanglemet (Single and Two-site Von Neumann Entropy, Quantum Mutual Information, Negativity, Purity). Moreover [2], in the non integrable case x<=1, we investigate at half filling the superconductor-insulator QPT. The study is performed by means of a composite analysis of the numerical results obtained within Density-Matrix Renormalization Group algorithm; on the one hand, the charge gap closure is studied by standard finite size scaling analysis; on the other hand we look at singularities in the derivatives of single-site entanglement. The results of the two techniques perfectly agree for x >0.5, showing that the validity of the results obtained by bosonization technique ceases in this region: the transition takes place at a finite Coulomb interaction u_c. Numerical extimations of binding energy, spin gap and pairing correlations are then exploited to characterize the superconducting nature of the region below u_c. - Zonta Dimensione dei nodi in polimeri circolari. Vogliamo studiare, via simulazioni Monte Carlo e analisi di scaling, la lunghezza media all'equilibrio () di un nodo in un polimero circolare. Usando due diverse definizioni statistiche di lunghezza di un nodo troviamo che ~ N^t, dove N e' il grado di polimerizzazione dell'anello. In particolare emerge che i nodi primi sono debolemente localizzati (00.1 T); un'andamento oscillatorio sembra instaurarsi a campi ancora piu' alti. Questo comportamento e' inspiegabile in termini termodinamici e non ha ancora trovato una spiegazione teorica convincente, nonostante alcune proposte di una certa risonanza (nuovo stato di tunneling coerente della materia/Fulde/, accoppiamento mediato da nuclei a quadrupolo elettrico/Enss-Wuerger/Fulde/). Nella mia presentazione mostrero' come il comportamento magnetodielettrico anomalo vada messo in relazione a quello magnetotermico negli stessi materiali, altrettanto anomalo, che ho gia' provveduto a spiegare per mezzo di un'estensione del modello 'standard' del tunneling tra due stati di un potenziale locale a doppia buca. Il mio modello prende le mosse da studi di simulazione e di diffusione neutronica/Kob/ in questi vetri silicati, che indicano come si debba tenere conto di almeno due specie dinamiche presenti nella loro composizione chimico-fisica. Il modello delle due specie di centri di tunneling/Jug/ spiega moltissima della fenomenologia osservata in questi vetri negli ultimi decenni e l'interpretazione delle anomalie magnetotermiche verra' brevemente ripresentata. La seconda parte della presentazione vertera' sulla teoria sviluppata di recente per l'interpretazione delle anomalie magnetodielettriche. Non solo l'esaltazione della permettivita' a deboli campi verra' spiegata, ma anche la successiva depressione per campi crescenti che nessun gruppo teorico ha sinora saputo affrontare. Si mostrera' come l'accordo tra teoria e esperimenti dimostri in modo inequivocabile la presenza di potenziali di tunneling a piu' di due minimi in questi vetri e l'importanza di una separazione microfasica nel materiale, con formazione di nanocristalli responsabili della sensibilita' a debolissimi campi. La teoria rappresenta la base per una completa comprensione in termini di meccanica statistica quantistica delle straordinarie proprieta' fisiche di questi materiali che potrebbero rivelarsi utili sensori sia di bassissime temperature che di debolissimi campi magnetici e rappresentare un nuovo stimolante campo di studi. - Mognetti Transizioni di fase a temperatura finita: Modello di Heisenberg ed altri esempi. Sono stati studiati una classe di modelli statistici su reticolo con simmetria O(N) e generica interazione a primi vicini ferromagnetica. Simulazioni M.C. e stime esatte mettono in evidenza la possibilita' di transizioni di fase continue a temperatura finita il cui parametro critico e' l'energia. Argomentazioni di simmetria ed evidenze numeriche prevedono poi un comportamento critico di Ising. D'altra parte uno studio analitico a N=infinito evidenzia una criticita' del campo medio. Spiegheremo l'apparente paradosso includendo ordini in 1/N, mostrando come la regione critica di Ising scali come 1/N nella direzione termica e come 1/N^{3/2} in quella magnetica. Questo spiega il motivo per cui a N=infinito soltanto il campo medio e' osservato. Mostreremo poi come la tecnica sviluppata sia poi estendibile ad altri sistemi statistici, in particolare sono stati considerati modelli Multicritici, ed un modello di Yukawa. - Lanotte Proprieta' statistiche del moto di particelle inerziali in un fluido turnbolento Verranno presentati alcuni risultati preliminari di simulazioni numeriche ad alta risoluzione di traccianti passivi (privi di massa) e particelle inerziali disperse un fluido turbolento. Mentre la distribuzione stazionaria dei traccianti passivi e' omogenea, le particelle inerziali tendono a distribuirsi in modo disomogeneo formando cluster. In particolare verra' esporato il duplice ruolo associato all'inerzia: di tipo dinamico, in base al quale le particelle tendono a scappare dalle regioni ellittiche del fluido, i.e. a forte vorticita'; di filtro temporale, poiche' le particelle inerziali a differenza dei traccianti passivi, hanno un tempo di risposta finito. - vaia Reentrant behavior and dissipative transition in 2D Josephson junction arrays The effects of dissipation are studied in the proximity of a quantum phase transition. The prototypical system is a resistively shunted two-dimensional Josephson junction array, simulated by means of an advanced Fourier path-integral Monte Carlo algorithm. A reentrant superconducting-to-normal phase transition is the most dramatic signature of the strong nonlinear fluctuations characterizing the quantum critical region at finite temperature. It is shown that a region of quantum criticality exists at finite dissipation and the zero-T phase diagram is constructed. The latter is of crucial importance for the fabrication of samples with interaction parameters suited to match the quantum critical region. It is shown how quantum fluctuations are quenched by dissipation, leading to the removal of the reentrance. As dissipation can drive the system in and out of the critical region, it reveals as a fundamental aspect for both theoretical and experimental investigations. - De Stefanis Simple lattice model for the solvation of an apolar molecule in water We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water as a solvent for nonpolar (inert) molecules. Water molecules are of the ``Mercedes Benz'' type, i.e., they possess an equilateral triangle symmetry, with three bonding arms. Bond formation depends both on orientation and local density. The insertion of nonpolar molecules (no bonding arms) displays the qualitative features that are typical signatures of the hydrophobic hydration: a large negative transfer entropy; a large positive transfer free energy; a steep temperature dependence of the transfer entalpy and entropy, i.e, a large positive transfer heat capacity. In order to understand the microscopic bases of the hydrophobic effect we include the analysis of the hydrogen-bond coordination of a water molecule in the bulk and in the first hydration shell. The results are compared with experiments where possible. The finite temperature analysis is carried out by a generalized first order approximation on a triangle cluster. In the very last part of the talk we briefly introduce a work-in-progress application of the water model to the study of the hydration of a polymer (SAW on a triangular lattice) by means of Dynamic Monte Carlo methods. - Cicuta Matrici aleatorie e conteggio di cammini Un metodo sistematico permette di valutare l'aspettazione per matrici M di arbitrario ordine n x n, con entrate M_{ij} variabili aleatorie indipendenti identicamente distribuite. Il metodo e' facilmente utilizzato su computer e porta ad una valutazione esatta di una parte dello sviluppo di Taylor del risolvente G(z). Queste informazioni sono utili per lo studio dei riscalamenti necessari nel limite n \to \infty, per la determinazione dello spettro delle matrici laplaciane, per discutere la validita' ed i limiti del teorema di addizione delle matrici aleatorie.